• Title/Summary/Keyword: 나노 재료

Search Result 2,796, Processing Time 0.033 seconds

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method (수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성)

  • Cho, Min-Young;Kim, Min-Su;Kim, Ghun-Sik;Choi, Hyun-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.262-266
    • /
    • 2010
  • ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing (Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성)

  • Lee, Kwangmin;Kim, Yongjae;Kang, Kyungho;Yoon, Duhyeon;Rho, Sanghyun;Kang, Seokil;Yoo, Daeheung;Lim, Hyunpil;Yun, Kwiduk;Park, Sangwon;Kim, Hyun Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.240-245
    • /
    • 2013
  • Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate ($3mm{\times}4mm{\times}0.1mm$) were connected to an anode and cathode, respectively. The progressive formation of $TiO_2$ nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered $TiO_2$ nanotubes were formed at a potential of 20 V in a solution of 1M $H_3PO_4$ + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of $TiO_2$ nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The $TiO_2$ nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the $TiO_2$ nanotubes was gradually reduced. Short anodization processing for $TiO_2$ nanotubes of within 10 minutes was established.

Effects of F-treatment on the Degradation of $Mg_2$Ni type Hydrogen Storage Alloy Electrode ($Mg_2$Ni계 수소저장합금전극의 퇴화거동에 미치는 불화 처리 영향)

  • Kim, Jun-Seong;Choe, Jae-Ung;Lee, Chang-Rae;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.294-299
    • /
    • 2001
  • Effects of the surface fluorination on the electrochemical charge-discharge properties of $Mg_2$Ni electrode in Ni-MH batteries fabricated by mechanical alloying were investigated. After 20h ball milling, Mg and Ni powder formed nanocrystalline $Mg_2$Ni. Discharge capacity of this alloy increased greatly at first one cycle, but due to the formation of Mg(OH)$_2$ passive layer, it showed a rapid degradation in alkaline solution within 10cyc1es. In case of 6N KOH +xN KF electrolyte (x = 0.5, 1, 2), a continuous and stable fluorinated layer formed by adding excess F$^{[-10]}$ ion, increased durability of $Mg_2$Ni electrode greatly and high rate discharge capability(90-100mAh/g). 2N KF addition led to the highest durability of all tested here. The reason of the improvement is due to thin MgF$_2$, which can prevent the $Mg_2$Ni electrode from forming Mg(OH)$_2$layer that is the main cause of degradation.

  • PDF

The Effect of the Addition of BZO Nanopowder in the YBCO PLD Targets on the Flux Pinning Properties of BZO-YBCO Thin Film (YBCO PLD 타겟에 BZO 나노분말 첨가에 따른 PLD-YBCO 박막의 자속고정 효과)

  • Song, K.J.;Ko, R.K.;Lee, Y.S.;Park, Y.M.;Yang, J.S.;Kim, H.S.;Ha, H.S.;Ha, D.W.;Kim, S.W.;Oh, S.S.;Kim, D.J.;Park, C.;Yoo, S.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.20-21
    • /
    • 2005
  • [ $BaZrO_3$ ], nanopowder was added to YBCO powder to make ($BazrO_3)_x(YBCO)_{(100-x)mol.-%}$ ($BZO_x$-YBCO) ($0{\leq}x{\leq}10$) composite targets fur pulsed laser deposition of superconducting layer in order to investigate the effect of the addition of BZO nanopowder in the YBCO target on the flux pinning properties of $BZO_x$-YBCO thin films. All the $BZO_x$-YBCO thin films were grown on single crystal STO substrate under similar conditions in the PLD chamber. The effect of YBCO targets doped with BZO on the flux pinning properties of $BZO_x$-YBCO thin films has been investigated comparatively. The isothermal magnetizations M(H) of the films were measured at temperatures between 5 and 80 K in fields up to 5 T, employing a PPMS. The optimal amount of BZO nanopowders in $BZO_x$-YBCO thin films to obtain the strongest flux pinning effects at high magnetic fields is about 6 mol.-%.

  • PDF

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders (x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가)

  • Ryu, Je-Hyeok;Moon, Jung-In;Park, Yeon-Kyung;Nguyen, Tuan Dung;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.220-226
    • /
    • 2012
  • Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.

Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing (크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과)

  • Lee, Sang Hoon;Lee, Tae Il;Moon, Kyeong-Ju;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.

Microstructural Characterization of $Al_3$(${Nb_{1-x}}{Zn_x}$) Alloy Prepared by Elemental Powder and Intermetallic Powder (원료분말과 금속간화합물 분말로 기계적 합금화한 $Al_3$(${Nb_{1-x}}{Zn_x}$) 합금의 미세구조특성)

  • Lee, Gwang-Min;Lee, Ji-Seong;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.345-353
    • /
    • 2001
  • The present study was carried out to investigate the effect of zirconium addition to $Al_3$Nb intermetallic on the crystal structural modification and microstructural characterization of $Al_3$Nb intermetallic. Elemental Al, Nb, Zr powders and arc melted $Al_3$Nb and $Al_3$Zr intermetallic mixed powders were used as starting materials. MA was carried out in an attritor rotated with 300 rpm for 20 hours. The behavior of MA between two starting materials was some-what different in which the value of internal strain of the elemental powders was higher than that of the intermetallic powder. The intermetallic powder was much more disintegrated during the MA processing. In the case of the elemental powders, AlNb$_2$ phase were transformed to Al(Nb.Zr)$_2$ as a result of ternary addition of Zr element. With the successive heat treatment at 873K for 2 hours, the Al(Nb.Zr)$_2$ phase was transformed to more stable $Al_3$(Nb.Zr) phase. This transformation was clearly confirmed by the identification of X-ray peak position shift. On the other hand, in the carte of the intermetallic powder, there was no evidence of phase transformation to other ternary intermetallic compounds or amorphous phases, even in the case of additional heat treatment. However, nano-sized intermetallic with $Al_3$Nb and $Al_3$Zr were just well distributed instead of phase transformation.

  • PDF

Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate (폴리머 기판 위에 전사된 실리콘 박막의 기계적 유연성 연구)

  • Lee, Mi-Kyoung;Lee, Eun-Kyung;Yang, Min;Chon, Min-Woo;Lee, Hyouk;Lim, Jae Sung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Development of flexible electronic devices has primarily focused on printing technology using organic materials. However, organic-based flexible electronics have several disadvantages, including low electrical performance and long-term reliability. Therefore, we fabricated nano- and micro-thick silicon film attached to the polymer substrate using transfer printing technology to investigate the feasibility of silicon-based flexible electronic devices with high performance and high flexibility. Flexibility of the fabricated samples was investigated using bending and stretching tests. The failure bending radius of the 200 nm-thick silicon film attached on a PI substrate was 4.5 mm, and the failure stretching strain was 1.8%. The failure bending radius of the micro-thick silicon film attached on a FPCB was 2 mm, and the failure strain was 3.5%, which showed superior flexibility compared with conventional silicon material. Improved flexibility was attributed to a buffering effect of the adhesive between the silicon film and the substrate. The superior flexibility of the thin silicon film demonstrates the possibility for flexible electronic devices with high performance.

Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks (La이 혼입된 고유전체/메탈 게이트가 적용된 나노 스케일 NMOSFET에서의 PBTI 신뢰성의 특성 분석)

  • Kwon, Hyuk-Min;Han, In-Shik;Park, Sang-Uk;Bok, Jung-Deuk;Jung, Yi-Jung;Kwak, Ho-Young;Kwon, Sung-Kyu;Jang, Jae-Hyung;Go, Sung-Yong;Lee, Weon-Mook;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.182-187
    • /
    • 2011
  • In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process (열증착법으로 성장된 ZnO 나노구조물의 산소유량 변화에 대한 성장 변화)

  • Kim, Kyoung-Bum;Jang, Yong-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Jo, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.839-843
    • /
    • 2011
  • ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.