DOI QR코드

DOI QR Code

TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing

Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성

  • Lee, Kwangmin (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Kim, Yongjae (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Kang, Kyungho (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Yoon, Duhyeon (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Rho, Sanghyun (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Kang, Seokil (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Yoo, Daeheung (Department of Materials Science & Engineering, Research Institute for Functional Surface Engineering, Chonnam National University) ;
  • Lim, Hyunpil (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yun, Kwiduk (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Sangwon (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Hyun Seung (R&D Center, MegaGen CO., Ltd.)
  • 이광민 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 김용재 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 강경호 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 윤두현 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 노상현 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 강석일 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 유대흥 (전남대학교 신소재공학부, 기능성 표면공학연구소) ;
  • 임현필 (전남대학교 치의학전문대학원 보철학교실) ;
  • 윤귀덕 (전남대학교 치의학전문대학원 보철학교실) ;
  • 박상원 (전남대학교 치의학전문대학원 보철학교실) ;
  • 김현승 (메가젠(주) 기술연구소)
  • Received : 2013.03.19
  • Accepted : 2013.04.02
  • Published : 2013.04.27

Abstract

Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate ($3mm{\times}4mm{\times}0.1mm$) were connected to an anode and cathode, respectively. The progressive formation of $TiO_2$ nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered $TiO_2$ nanotubes were formed at a potential of 20 V in a solution of 1M $H_3PO_4$ + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of $TiO_2$ nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The $TiO_2$ nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the $TiO_2$ nanotubes was gradually reduced. Short anodization processing for $TiO_2$ nanotubes of within 10 minutes was established.

Keywords

References

  1. O. S. Kwon, G. H. Roo, G. B. Park, M. H. Lee, T. S. Bae and O. Y. Lee, J. Kor. Inst. Met & Mater., 43, 117 (2005) (in Korean).
  2. Y Han and K Xu, J. Biomed, Mater. Res., 71A, 608 (2004). https://doi.org/10.1002/jbm.a.30177
  3. A. Wennerberg, T. Albrektsson, B. Andersson and J. J. Krol, Clin. Oral Impl. Res., 6, 24 (1995). https://doi.org/10.1034/j.1600-0501.1995.060103.x
  4. D. Buser, N. Broggini, M. Wieland, RK. Schenk, AJ. Denzer, DL. Cochran, B. Hoffmann, A. Lussi and SG. Steinemann, J. Dent. Res., 83, 529 (2004). https://doi.org/10.1177/154405910408300704
  5. S. S. Moncler, T. Testori and JP. Bernard, J. Biomed. Mater. Res., 15, (46) 2004.
  6. H. M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res., 32, 409 (1996). https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  7. S. R. Roh, Y. R. Lee, H. J. Song and Y. J. Park, Kor. J. Mater. Res., 10(16), 606 (2006) (in Korean).
  8. H. S. Kim, K. M. Lee, D. J. Lee, S. W. Park and K. K. Lee, Kor. J. Mater. Res., 1(17), 6 (2007) (in Korean).
  9. J. M. Macak, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed., 44, 2100 (2005). https://doi.org/10.1002/anie.200462459
  10. J. Zhoa, X. Wang, R. Chen and L. Li, Solid State Commun., 134, 705 (2005). https://doi.org/10.1016/j.ssc.2005.02.028
  11. J. M. K. Sirotna and P. Schmuki, Electrochim. Acta, 50, 3679 (2005). https://doi.org/10.1016/j.electacta.2005.01.014
  12. R. Beranek, H. Hildebrand and P. Schmuki, Electrochem. Solid-State Lett., 6, B12 (2003). https://doi.org/10.1149/1.1545192
  13. H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna and P. Schmuki, Electrochem. Commun., 7, 576 (2005). https://doi.org/10.1016/j.elecom.2005.04.008
  14. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes, J. Mater. Res., 18, 2588 (2003). https://doi.org/10.1557/JMR.2003.0362
  15. B. Yang, M. Uchida, H. M. Kim, X. Zhang and T. Kokubo, Biomater., 25, 1003 (2004). https://doi.org/10.1016/S0142-9612(03)00626-4
  16. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, J. Mater. Res., 16, 3331 (2001). https://doi.org/10.1557/JMR.2001.0457
  17. F. Schmidt-Stein, S. Thiemann, S Berger, R. Hahn and P. Schmuki, Acta Mater., 58, 6317 (2010). https://doi.org/10.1016/j.actamat.2010.07.053
  18. Y. Shin and S. Lee, Nano Lett., 8, 3171 (2008). https://doi.org/10.1021/nl801422w
  19. G. Li, Z Liu, J. Lu, L. Wang and Z. Zhang, Appl. Surf. Sci., 255, 7323 (2009). https://doi.org/10.1016/j.apsusc.2009.03.097
  20. J. Zhao, X. Wang, T. Sun and L. Li, Nanotech., 16, 2450 (2005). https://doi.org/10.1088/0957-4484/16/10/077
  21. M. P. Neupane, I. S. Park, M. H. Lee, T. S. Bae and F. Watari, Bio-Med Mater Eng., 19, 77 (2009).
  22. I. Demetrescu, D. Ionita, C. Pirvu and D. Portan, Mol. Cryst. Liq. Cryst., 521, 195 (2010). https://doi.org/10.1080/15421401003715918
  23. J. Wan, X. Yan, J. Ding, M. Wang and K. Hu, Mater. Charact., 60, 1534 (2009). https://doi.org/10.1016/j.matchar.2009.09.002
  24. K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore and D. Losic, Biomater., 31, 532 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.074
  25. S. Kaneco, Y. Chen, P. Westerhoff and J. C. Crittenden, Scripta Mater., 56, 373 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.001
  26. C. Jaeggi, P. Kern, J. Michler, J. Patscheider, J. Tharian and F. Munnik, Surf. Interface. Anal., 38, 182 (2006). https://doi.org/10.1002/sia.2261
  27. S. Minagar, C. C. Berndt, J. Wanga, E. Ivanova and C. Wen, Acta Biomater., 8, 2875 (2012). https://doi.org/10.1016/j.actbio.2012.04.005
  28. S. Bauer, S. Kleber and P. Schmuki, Electrochem. Commun., 8, 1321 (2006). https://doi.org/10.1016/j.elecom.2006.05.030
  29. K. S. Raza, M. Misra and K. Paramguru, Electrochim. Acta, 51, 154 (2005). https://doi.org/10.1016/j.electacta.2005.04.011
  30. H. Tsuchiya, J. M. Macak, A. Ghicov, Y. C. Tang, S. Fujimoto, M. Niinomi, T. Noda and P. Schmuki, Electrochim. Acta, 52, 94 (2006). https://doi.org/10.1016/j.electacta.2006.03.087