DOI QR코드

DOI QR Code

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process

열증착법으로 성장된 ZnO 나노구조물의 산소유량 변화에 대한 성장 변화

  • Kim, Kyoung-Bum (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jang, Yong-Ho (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Chang-Il (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young-Hun (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Young-Jin (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jo, Jeong-Ho (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong-Hoo (Optic and Electronic Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
  • 김경범 (한국세라믹기술원 전자부품센터) ;
  • 장용호 (한국세라믹기술원 전자부품센터) ;
  • 김창일 (한국세라믹기술원 전자부품센터) ;
  • 정영훈 (한국세라믹기술원 전자부품센터) ;
  • 이영진 (한국세라믹기술원 전자부품센터) ;
  • 조정호 (한국세라믹기술원 전자부품센터) ;
  • 백종후 (한국세라믹기술원 전자부품센터) ;
  • 남산 (고려대학교 신소재공학과)
  • Received : 2011.08.16
  • Accepted : 2011.09.13
  • Published : 2011.10.01

Abstract

ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.

Keywords

References

  1. X. F. Duan, Y. Huang, J. F. Wang, and C. M. Lieber, Nature, 409, 66 (2001). https://doi.org/10.1038/35051047
  2. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  3. Y. W. Heo, L. C. Tien, D. P. Norton, S. J. Pearton, B. S. Kang, F. Ren, and J. R. LaRoche, Appl. Phys. Lett., 85, 15 (2004).
  4. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Funct. Mater., 14, 2 (2002).
  5. A. Peiro, P. Ravirajan, K. Govender, D. Boyle, P. O'brien, D. Bradley, J. Nelson, and J. Durrant, J. Mater. Chem., 16, 21 (2006).
  6. Z. Y. Fan and J. G. Lu, Appl. Phys. Lett., 86, 12 (2005).
  7. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003). https://doi.org/10.1002/adfm.200390013
  8. X. F. Duan and C. M. Lieber, J. Am. Chem. Soc., 112, 188 (2000).
  9. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett., 76 , 2011 (2000). https://doi.org/10.1063/1.126238
  10. Y. P. Fang, X. G. Wen, S. H. Yang, Q. Pang, L. Ding, J. N. Wang, and W. K. Ge, J. Sol-Gel Sci. Technol., 36, 234 (2005).
  11. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem., 115, 3139 (2003). https://doi.org/10.1002/ange.200351461
  12. L. Vayssieres, Adv. Mater., 15, 464 (2003). https://doi.org/10.1002/adma.200390108
  13. Mute A, Peres M, Peiris TC, Louren AC, Jensen LR, Monteiro T. J. Nanosci Nanotechnol., 10, 2669, (2010). https://doi.org/10.1166/jnn.2010.1386
  14. M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater., 13, 113 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  15. C. G, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee. Adv. Funct. Mater., 14, 6 (2004).
  16. A. Ueda, T. Nakao, M. Azuma, and T. Kobayashi, Catal. Today, 45, 135 (1998). https://doi.org/10.1016/S0920-5861(98)00261-2
  17. H. Muraki, K. Yokota, and Y. Fujitani, Appl. Catal., 48, 93 (1989). https://doi.org/10.1016/S0166-9834(00)80268-7
  18. Z. Zhou, C. Zhan, Y. Wang, Y. Su, Z. Yang, and Y. Zhang, Mater. Lett., 65, 832, (2011). https://doi.org/10.1016/j.matlet.2010.12.032
  19. K. B. Kim, Y. H. Jeong, C. I. Kim, Y. J. Lee, J. H. Cho, and J. H. Paik, J. Appl. Phys., 50, 055003 (2011). https://doi.org/10.1143/JJAP.50.055003
  20. C. G, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee. Adv. Funct. Mater., 14, 6 (2004).