DOI QR코드

DOI QR Code

Thermal Process Optimization of Pb-free Ag-paste and Evaluation of Electrical Properties in Mono-Si Solar Cell

단결정 Si 태양전지 적용을 위해 제조된 무연 은 페이스트의 열 공정 최적화 및 전기적 특성 평가

  • Jeong, Ji-Hyun (Department of Materials Science & Engineering, ReSEM, Chungju National University) ;
  • Kim, Sung-Jin (Zenixon Co. Ltd.) ;
  • Son, Chang-Rok (Zenixon Co. Ltd.) ;
  • Ur, Soon-Chul (Department of Materials Science & Engineering, ReSEM, Chungju National University) ;
  • Kweon, Soon-Yong (Department of Materials Science & Engineering, ReSEM, Chungju National University)
  • 정지현 (충주대학교 신소재공학과, 친환경에너지 부품소재센터) ;
  • 김성진 ((주) 제닉슨) ;
  • 손창록 ((주) 제닉슨) ;
  • 어순철 (충주대학교 신소재공학과, 친환경에너지 부품소재센터) ;
  • 권순용 (충주대학교 신소재공학과, 친환경에너지 부품소재센터)
  • Received : 2011.08.16
  • Accepted : 2011.09.20
  • Published : 2011.10.01

Abstract

Two kind of Ag-pastes were prepared for integrating the bulk Si solar cell. One is the Ag-paste with Pb-based glass frit and the other is that with Bi-based glass frit. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 2 wt% additives. After fabricating the Ag-pastes, they was coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. The solar cell efficiency was 17.6% in the case of the Pb-based Ag-paste. However that was 16.2% in the solar cell integrated with the Bi-based Ag-paste. The lower performance in Bi-based Ag-paste was caused by the higher series resistance and the lower shunt resistance in comparison with the Pb-based Ag-paste.

Keywords

References

  1. S. S. Kim, D. G. Lim, D. Y. kim, J. M. Kim, C. Y. Won, and J. Yi, J. KIEEME, 10, 1034 (1997).
  2. H. Y. Kwon, J. D. Lee, M. J. Kim, and S. H. Lee, J. KIEEME, 23, 571 (2010).
  3. R. W. Vest, Ceram. Bull., 65, 631(1986).
  4. Y. Li and C. P. Wong, Mater. Sci. Eng., 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  5. Y. Zhang, Y. Yang, J. Zheng, W. Hua, and G. Chen, Mater. Chem. Phys., 114, 319 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.011
  6. S. B. Rane, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Lett., 57, 3096 (2000).
  7. P. F. Becher and W. L. Newell, J. Mater. Sci., 12, 90 (1977). https://doi.org/10.1007/BF00738474
  8. S. A. Ketkar, G. G. Umarji, G. J. Phatak, T. Seth, U. P. Mulik, and D. P. Amalnerkar, Mater. Sci. Eng., 132, 197 (2006). https://doi.org/10.1016/j.mseb.2006.02.022
  9. Y. Yang, S. Seyedmohammadi, U. Kumar, D. Gnizak, E. Graddy, and A. Shaikh, Energy Procedia, 8, 607 (2011). https://doi.org/10.1016/j.egypro.2011.06.190
  10. S. H. Park, D. S. Seo, and J. K. Lee, Colloid Surf., 313, 197 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.092
  11. L. Shiyong, W. Ning, X. Wencai, and L. Yong, Mater. Chem. Phys., 111, 20 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.042
  12. S. J. Jeon, S. M. Koo, and S. A. Hwang, Solar Energy Mater. Solar Cells, 93, 1103 (2009). https://doi.org/10.1016/j.solmat.2009.01.003
  13. S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics, 2nd ed. (Centre for Photovoltaic Engineering, University of NSW, Sydney, 2009) p. 49.