나노와이어 FET은 natural length가 작아 단채널 효과가 MOSFET에 비해 줄어든다는 장점이 있어 미래의 소자 구조로 주목 받고 있다. 그런데 나노와이어 FET을 공정할 때 채널 etching에서 채널이 완벽하게 원형 구조를 가지는 것이 어렵다. 본 논문에서는 gate-all-around 실리콘 나노와이어 FET의 aspect ratio에 따른 트랜지스터의 특성 변화를 알아 보았다. 시뮬레이션 결과, aspect ratio가 작을수록 나노와이어 FET에서의 단채널 효과가 줄어드는 경향을 보였다.
본 논문에서는 나노와이어 N-채널 GAA MOSFET의 항복전압 특성을 측정과 3 차원 소자 시뮬레이션을 통하여 분석하였다. 측정에 사용된 나노와이어 GAA MOSFET는 게이트 길이가 250nm이며 게이트 절연층 두께는 6nm이며 채널 폭은 400nm부터 3.2um이다. 측정 결과로부터 나노와이어 GAA MOSFET의 항복전압은 게이트 전압에 따라 감소하다가 높은 게이트 전압에서는 증가하였다. 나노와이어의 채널 폭이 증가할수록 항복전압이 감소한 것은 floating body 현상으로 채널의 포텐셜이 증가하여 기생 바이폴라 트랜지스터의 전류 이득이 증가한 것으로 사료된다. 게이트 스트레스로 게이트 절연층에 양의 전하가 포획되면 채널 포텐셜이 증가하여 항복전압이 감소하고 음의 전하가 포획되면 포텐셜이 감소하여 항복전압이 증가하는 것을 알 수 있었다. 항복전압의 측정결과는 소자 시뮬레이션의 포텐셜 분포와 일치하는 것을 알 수 있었다.
본 논문에서는 30 nm 채널 길이와 5 nm의 채널 반지름을 갖는 실리콘 기반의 나노와이어 MOSFET의 고주파 모델링을 다루고 있다. 3차원 소자 시뮬레이션을 이용하여 실리콘 나노와이어 MOSFET의 Y-parameter와 Z-parameter를 100 GHz까지 확보하였으며 이를 이용하여 모델 파라미터에 필요한 수식을 구하였다. 모델과 파라미터 추출 수식을 이용하여 회로 검증용 tool인 HSPICE에 의하여 검증이 이루어졌으며 quasi-static 기반의 고주파 모델이 100 GHz의 높은 주파수까지도 소자의 특성을 정확히 예측함을 확인하였다. 모델 검증은 MOSFET의 포화 영역 ($V_{gs}$ = $_{ds}$ = 1 V)과 선형 영역 ($V_{gs}$ = 1 V, $V_{ds}$ = 0.5 V)의 바이어스 조건에서 이루어졌으며 두 바이어스 조건에서의 Y-parameter에 대한 모델의 오차는 약 1 %로 매우 작은 값을 보여 준다.
본 연구에서는 1T-DRAM 응용을 위해 Bipolar Junction Transistor 모드 (BJT mode)에서 비대칭 소스/드레인 수직형 나노와이어 소자의 순방향 및 역방향 메모리 윈도우 특성을 분석하였다. 사용된 소자는 드레인 농도가 소스 농도보다 높으며 소스 면적이 드레인 면적보다 큰 사다리꼴의 수직형 gate-all-around (GAA) MOSFET 이다. BJT모드의 순방향 및 역방향 이력곡선 특성으로부터 순방향의 메모리 윈도우는 1.08V이고 역방향의 메모리 윈도우는 0.16V이었다. 또 래치-업 포인트는 순방향이 역방향보다 0.34V 큰 것을 알 수 있었다. 측정 결과를 검증하기 위해 소자 시뮬레이션을 수행하였으며 시뮬레이션 결과는 측정 결과와 일치하는 것을 알 수 있었다. 1T-DRAM에서 BJT 모드를 이용하여 쓰기 동작을 할 때는 드레인 농도가 높은 것이 바람직함을 알 수 있었다.
모바일 기기의 성장세로 인해 낸드 플래시 메모리에 대한 수요가 급격히 증가하면서 높은 집적도의 소자에 대한 요구가 커지고 있다. 그러나 기존의 MOSFET 구조의 소자는 비례 축소에 의한 게이트 누설 전류, 셀간 간섭, 단 채널 효과 같은 여러 어려움에 직면해 있다. 특히 트윈 실리콘 나노 와이어 전계 효과 트랜지스터 (TSNWFETs)는 소자의 크기를 줄이기 쉬우며 게이트 비례 축소가 용이하여 차세대 메모리 소자로 각광받고 있다. 그러나 TSNWFETs의 공정 방법과 실험적인 전기적 특성에 대한 연구는 많이 이루어 졌지만, TSNWFETs의 전기적 특성에 대한 이론적인 연구는 많이 진행되지 않았다. 본 연구는 직경의 크기가 다른 나노 와이어를 사용한 TSNWFETs의 전기적 특성에 대해 이론적으로 계산하였다. TSNWFETs과 실리콘 나노 와이어를 사용하지 않은 전계 효과 트랜지스터(FET)를 3차원 시뮬레이션 툴을 이용하여 계산하였다. TSNWFETs와 FETs의 드레인 전류와 문턱전압 이하 기울기, 드레인에 유기된 장벽의 감소 값, 게이트에 유기된 드레인 누설 전류 값을 이용하여 전류-전압 특성을 계산하였다. 이론적인 결과를 분석하여 TSNWFETs의 스위칭 특성과 단 채널 효과를 최소화하는 특성 및 전류 밀도를 볼 수 있었으며, 나노 와이어의 직경이 감소하면 증가하는 드레인에 유기된 장벽의 감소를 볼 수 있었다.
본 연구에서는 채널 길이와 폭의 변화에 따른 실리콘 나노와이어 MOSFET 소자의 아날로그 특성을 비교 분석 하였다. 측정 온도는 $30^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$이다. 사용된 소자의 폭은 20nm, 30nm, 80nm, 130nm 와 길이는 250nm, 300nm, 250nm, 500nm을 사용하였다. 소자의 아날로그 특성은 이동도, 트랜스컨덕턴스, Early 전압, 전압이득, 드레인 전류 이다. 이동도는 폭이 증가함에 따라 증가하고 길이와 온도가 증가할수록 감소한다. 트랜스 컨덕턴스는 폭이 증가하면 증가한다. Early 전압은 길이와 온도가 증가함에 따라 증가하고 폭이 증가함에 따라 감소한다. 따라서 이득은 폭의 감소와 길이가 증가함에 따라 증가하고 온도가 증가함에 따라 감소하는 것을 알 수 있었다.
본 연구에서는 시뮬레이션을 통해 채널 폭과 채널 도핑 형태에 따른 수직형 나노와이어 GAA MOSFET의 특성을 비교, 분석하였다. 첫 번째로, 드레인의 끝부분을 20nm로 고정시키고 소스의 끝부분이 30nm, 50nm, 80nm, 110nm로 식각된 모양으로 설계한 구조의 특성을 비교, 분석하였다. 두 번째로는 드레인, 채널, 소스의 폭이 50nm로 일정한 직사각형 모양의 구조를 설계하였다. 이 구조를 기준으로 삼아 드레인의 끝부분이 20nm가 되도록 식각된 사다리꼴 모양과 반대로 소스의 끝부분이 20nm가 되도록 식각된 역 사다리꼴 모양의 구조를 설계하여 위 세 구조의 특성을 비교, 분석하였다. 마지막으로는 폭 50nm의 직사각형 구조의 채널을 다섯 구간으로 나누어 도핑 형태를 다양하게 변화시킨 것의 특성을 비교, 분석하였다. 첫 번째 시뮬레이션에서는 채널 폭이 가장 작을 때, 두 번째 시뮬레이션에서는 사다리꼴 모양의 구조일 때, 세 번째 시뮬레이션에서는 채널의 중앙 부분이 높게 도핑 되었을 때 가장 좋은 특성을 보였다.
본 연구에서는 채널 폭 변화에 따른 나노와이어 GAA 소자의 GIDL 전류 (Gate Induced Drain Leakage Current)를 측정하고, hot carrier 스트레스를 인가하였을 때 소자의 GIDL전류특성 변화를 분석하였다. 소자의 길이는 250nm로 고정시키고 채널 폭이 10nm, 50nm, 80nm, 130nm인 소자들을 사용하여 측정하였다. 스트레스 전의 소자를 측정한 결과 채널 폭이 감소할수록 GIDL전류가 증가하였고, 채널 폭이 증가할수록 구동전류는 증가함을 확인하였다. Hot carrier 스트레스에 따른 GIDL 전류 측정값의 변화율은 채널 폭이 감소할수록 큰 변화율을 보였다. 또한, 채널 폭이 감소할수록 또 hot carrier 스트레스 후 GIDL 전류가 증가하는 이유를 소자 시뮬레이션을 통하여 확인하였다.
We fabricated Si nano-wire MOSFET by using the conventional photolithography with a $1.5{\mu}m$ resolution. Si nano-wire was fabricated by using reactive ion etching (RIE), anisotropic wet etching and thermal oxidation on a silicon-on-insulator (SOI) substrate, and its width is 30 nm. Logarithmic circuit consisting of a NMOSFET and Si nano-wire MOSFET has been constructed for application to high-sensitivity image sensor. Its sensitivity was 1.12 mV/lux. The output voltage swing was 1.386 V.
Si와 InAs 두 가지 채널 물질을 가지고 3가지 수송 방향 <100>, <110>, <111>으로 변화시키며 각각의 Nanowire nMOSFETs을 가지고 ballistic quantum transport simulation을 진행하였다. 각각의 경우에 대해 E-k curve를 구한 다음에 band curvature로 캐리어의 유효질량을 계산하고, 이를 통해 MOSFET의 전류 세기를 결정짓는 DOS와 carrier injection velocity를 구하여 어떤 경우에 가장 높은 ON-current를 흐르게 하는지 확인해 보았다. 하지만 예상과 달리 나노와이어의 직경이 1.4nm으로 매우 작기 때문에 valley-splitting이 일어나 Si<110>의 경우에 가장 작은 캐리어 유효 질량을 갖고 있는 사실을 확인할 수 있었다. 결론적으로 Si<100>의 경우에 trade-off 관계에 있는 DOS와 carrier injection velocity가 6가지 경우 중 최적의 조합을 가짐으로써 가장 높은 ON-current를 흐르게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.