함수적 사고는 수학적 문제 해결에 있어 기본적인 사고이다. 함수적 사고에서는 변수 사이의 종속성 파악이 그 핵심이 된다. 이는 DGS 동적 기하의 동적(변화), 종속적(구성)이라는 특성에 잘 부합한다. 이에 우리는 동적 기하 환경에서 타당한 종속성 부여를 통해 primitive한 생성자를 알아보고, 이들의 조작과 역 조작, 합성 조작하는 과정을 통해 함수적 사고에 접근하는 방법을 연구해 보려 한다. 나아가 자취 기능을 이용함으로써 시각화를 통해 종속적 관계를 표현해 보고자 한다. 이것은 MicroWorld 환경에서 학습자가 스스로 대상을 구성하는 경험을 통해 함수적 사고를 자연스럽게 형성하도록 하는 것이 바람직하다는 관점에 바탕을 두고 있다.
현 교육과정에서 이차함수 그래프에 관한 교수-학습은 대수적 조작에 의한 완전제곱형식으로의 변환을 강조하고 이미 선행한 일차함수의 그래프와는 무관하게 다루어지고 있다. 본 논문은 이차함수 그래프의 구조적 특성이라 할 수 있는 대칭성, 꼭지점 및 합동에 대한 기하적인 근거를 일차함수의 그래프에 기초하여 분석하고 이것의 결과를 구체적 이차함수에 대해 그 꼭지점의 좌표 및 절편을 찾는 데 적용한다. 본 연구는 이차함수 그래프의 구조적 특성을 일차함수의 그래프와 기하적으로 연결시키는 데 의의가 있으며 그 기하적인 과정은 완전제곱형식의 대수적 절차로 연결된다. 이러한 연결은 일차함수의 그래프에 대한 이해가 이차함수의 그래프에 대한 이해로 전이되어 이차함수에 대한 기하적인 이해를 넓히는 교수-학습방법이 될 수 있을 것이다.
본 논문에서는 기하학적인 관점으로 이변량 가우시안 Q-함수의 Craig 표현에 대한 새롭고 간단한 유도를 제시하고 있다. 또한, 이러한 기하학적인 유도는 이변량 가우시안 Q-함수의 또 다른 Craig 표현 식을 제시하고 있다. 새롭게 유도된 이변량 가우시안 Q-함수의 Craig 식은 2개의 상관 가우시안 잡음에서 직교좌표의 변환으로 생성되는 2개 웨지 영역의 기하학으로부터 새롭게 구한 것이다. 제시된 Craig 형태는 이변량 가우시안 Q-함수로 표현되는 확률을 계산하는데, 중요한 역할을 할 수 있다.
본 연구는 초등학교 6학년 학생들이 기하 증가 패턴을 탐구하는 상황에서 함수적 관계를 어떻게 인식하고 일반화하며 표현하는지에 대해 분석하였다. 연구 결과, 처음에는 학생들이 그림에 의존하여 문제를 해결하는 경향을 보였으나, 후속 항들을 탐구하는 과정에서 일반화에 대한 시도가 자연스럽게 나타났다. 또한, 패턴 탐구의 결과를 어떤 방식으로 표현하는지는 개인에 따라 차이가 있었는데, 이 표현 방식은 패턴을 일반화하고 유사 상황에 적용하는 과정에도 영향을 끼쳤다. 본 연구는 이러한 결과들을 토대로, 초등학교에서의 함수적 사고의 지도 방안에 대한 시사점을 제공한다.
택시거리함수는 거리함수의 조건을 만족하면서 실제로 택시가 갈 수 있는 경로를 따라 이동할 때 거리 개념을 주는 실용적인 거리개념이라 할 수 있다. 비 유클리드 기하의 하나로서 실제로 평면상을 이동하는 우리 실생활을 반영할 수 있는 이 개념은 러시아 태생의 수학자 H. Minkowski에 의해 처음으로 제안되고, E. F. Krause(1986)에 의해 단행본으로 출판되어 기본개념과 그간의 결과들이 소개 되어졌다. 그 후 이 거리개념을 가지는 공간에서 많은 연구가 이루어지고 있다. 본 연구에서는 비 유클리드 기하인 택시기하의 문제를 유클리드 평면기하의 결과 및 택시기하에 대한 선행연구결과 등을 참조하여 유클리드 기하와의 차별점과 택시거리함수를 이용한 평면기하의 제정리를 고찰하였다.
이 연구는 플라토 치료계획시스템의 치료계획에서 Ir-192 선원에 대한 처방점의 처방선량과 선원 주위의 선량분포상의 선량점들의 선량이 정확하게 계산되는지를 확인하는데 그 목적이 있다. 선원의 중심축의 전후방향에서의 평면의 직교좌표계와 측면방향에서의 평면의 직교좌표계 및 선원을 A4 용지 위에 그려서 치료계획시스템에 입력하였다. 처방선량은 선원중심으로부터 극각 $90^{\circ}, $270^{\circ}의 방향으로 반경 1 cm인 두 지점에 400 cGy를 처방하였다. 처방점과 선량점들의 선량은 치료계획시스템에서 출력된 선량과 파울 킹 등이 유도한 기하학 함수식으로 계산된 선량을 분석하였다. 본 실험의 분석에서 처방 점의 선량은 오차 없이 정확하게 일치하였고, 선량 점들의 선량은 1.85% 이내의 오차를 얻었다. 그리고 플라토 치료계획시스템의 선량계산은 허용오차 ${\pm}2%$ 범위 이내의 정확성으로 분석되었다. 파울 킹 등이 유도한 기하학 함수식을 사용하여 손으로 계산한 선량은 높은 정확성의 품질보증과 편리성에 기인하여, 임상에서 사용하는데 유용할 것으로 생각된다.
패턴 활동은 어린 학생들의 함수적 사고를 신장하는 데 효과적이지만, 구체적으로 패턴을 어떻게 지도해야 하는가에 대한 연구는 부족한 편이다. 이에 본 연구에서는 초등학생의 함수적 사고를 신장하기 위한 기하 패턴의 지도 방안을 도출하여, 이를 초등학교 수학 수업으로 구현한 사례를 분석하였다. 이를 위하여 초등학교 4학년 3개 학급을 선정하였고, 동일한 교수 학습 과정안을 바탕으로 세 명의 초등학교 교사들이 각 학급에서 수업을 진행하였다. 수업은 크게 공통성을 인식하는 과정, 공통성에 대한 인식을 확장하는 과정, 공통성을 표현하는 과정으로 구성하였으며, 분석 결과 기하 패턴의 구조를 분석하는 활동은 초등학교 4학년 학생들이 패턴의 일반화된 규칙을 추론하고 표현하는 활동에 영향을 주었다. 이와 같은 결과를 토대로 초등학생의 함수적 사고를 신장하기 위한 기하 패턴의 지도 방안에 대하여 시사점을 논의하였다.
본 논문에서는 맨델브로트(Mandelbrot) 집합의 개념을 3차의 복소 다항식 z^3$+c 에 확장시켜 3차 분기집합을 정의하고, 이 집합의 2-주기 성분의 경계선 방정식과 관련 기하학적 성질을 고등학교 및 대학에서 다루는 미적분학 관점에서 분석하고자 한다. 복소수, 삼각함수, 매개함수, 함수의 극값, 미분 및 적분 등의 기초 이론을 활용하여 2-주기 성분의 경계선 방정식을 매개함수로 표시하고, 경계선의 내부 면적, 둘레 길이, 무게중심 등을 이론적으로 기술한다. 수학 소프트웨어인 매스매티카(Mathematica)를 활용하여 2-주기성분의 작도 및 기하학적 성질에 관한 수치 해석적 결과를 제시하고자 한다.
본 연구는 중학교 학생들에게 닮은 삼각형의 대응변 사이에 성립하는 비례적 성질에 기초하여 함수를 작도할 수 있는 기회를 제공함으로써 대수적 함수와 그것의 기하학적 성질에 관한 학생들의 직관을 촉진시키기 위한 것이다. 또한, 학생들이 선택한 작도 방법에 관한 정당화의 과정을 강조함으로써 연역적 추론능력을 향상시키고자 하였다. 이 예비 연구의 결과로서 학생들이 함수를 작도하는 과정에서 나타나는 사고 과정의 특징과 교사의 역할에 관해 기술하였다.
이차원 영상에서 정의된 에지와 유사하게 삼차원 메쉬에서도 주요 부위의 경계를 표현하는 기하학 특징을 정의할 수 있다. 삼차원 메쉬에서 기하학 특징은 메쉬 단순화, 메쉬 변형과 메쉬 편집 등과 같은 여러 응용에 기본적인 항목으로 사용되고 있다. 본 논문에서는 삼차원 메쉬의 기학적 특징을 효과적으로 찾기 위하여 이차원 영상의 라이브와이어와 라이브레인 기법을 삼차원 메쉬로 확장한 기하학 라이브와이어와 기하학하 라이브레인 기법을 제안한다. 제안된 기법에서는 메쉬의 기하학 특징을 나타내기 위하여 근사곡률을 사용하였고 메쉬 그 자체를 정의된 비용함수를 에지의 가중치고 가지는 가중치 방향그래프로 나타내었다. 그리고 만들어진 가중치 방향그래프에 대해 잘 알려진 최단경로 탐색 알고리즘을 이용하여 사용자에 의해 지정된 점들 사이에 존재하는 삼차원 메쉬에서의 기하학 특징을 추출하였다. 본 논문에서는 사람 얼굴, 소, 신발과 치어 메쉬 모델에 나타나는 기하학 특징을 추출하기 위하여 제안한 기법을 적용하여 얻어진 결과를 가시화한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.