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ABSTRACT

In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional
(2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative
Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of
two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises.

The presented Craig form can play a important role in computing the probability represented by the 2-D
Gaussian Q-function.

I. Introduction the the one-dimensional(1-D)

Gaussian Q-function were recently reported™. The

Craig form for

It is very important to evaluate error probability
performance in designing wireless communication
systems. The Craig representation has played a key
role the probability
performance of digital modulation systems over

when evaluating etrror
fading channels by using the moment-generating

function(MGF) approach“'3]. Several derivations of

Craig form for the 2-D Gaussian Q-function applied

to compute the error probability of M-ary phase shift

keying system over various fading channels® .

The approximation for the 2-D Gaussian Q-function
was presented in terms of the 1-D Gaussian

(8

Q-function™. The algebraic derivation of the Craig

form for the 2-D Gaussian Q-function was presented
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in terms of the change of variables””, However, it is
said that there may exist a simple and new
derivation of the Craig form.

It is well-known that the geometric derivation is
easy to understand. Thus, in this paper, we will
present a geometric derivation of the Craig
representation by using the rotation of Cartesian
coordinates. We hope that the presented derivation is
easy and simple to understand the Craig form for
the 2-D Gaussian Q-function.

II. Problem

Our starting point is the analytical expression of
a double integral for the 2-D Gaussian Q-function in
the following:
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where p represents the correlation coefficient.
Chronologically, Simon first derived the Craig form
of the 2-D Gaussian Q-function by using the clever

change of variables™:
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It is also known that the Craig representation of
the 2-D Gaussian Q-function developed by Simon is

given by & °& (0

Qzyip)=
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tan 1(%) = 2 (1 sgn(y)] +sgny)tan” l(ﬁ)

in which sgn{u)=1 if v >0 and sgn{v)=—1 if u<0.
The generic Craig form for the 2-D Gaussian

{10}

Q-function provided in was derived from the
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upper limit of (3) and the properties of the 2-D
Gaussian Q-function given in " ¢ (638 and Q639
So far, however, geometric interpretations on the
change of variables (1) have not been reported in
detail.

It is said that the geometric solution of a problem
is easy and simple. Thus, in this letter, motivated by
unknown geometric derivation of the Craig form for
the 2-D Gaussian Q-function, we present a new
derivation for the Craig form on the basis of the
geometry of two wedge-shaped regions. The regions
are generated by the rotation of Cartesian
coordinates.

1. Geometric Derivation of the Craig form
for the 2-D Gaussian Q-Function

We consider X and Y to be two-dimensional
Gaussian random variables (RV) with two zero
means, py =g, =0, two unit variances, oy = o5 =1
and a correlation coefficient, py,. Figure 1 shows a
graphical representation of the open region,
2={(z,y)lX = z*, Y= y*},
constants z*,y* = 0.

Here, as illustrated in Figure 1, we rotate the
Cartesian coordinates counterclockwise through the

determined by two

angel ¢=tan" '(y*/z*) about the origin in a way that
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Fig. 1. The geometric interpretation on two wedge-shaped
regions generated by the rotation of Cartesian coordinates.
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In terms of U— V Cartesian coordinates, the open
region, 2= {(z,y)lX=z* Y= y*}, can be divided
into two wedge-shaped regions, < APU and < BPU.
The probability of the wedge-shaped region,
Pr{xAPU}, is obtained by using (4) and the theory

of linear combination of Gaussian RVs as

Pr{xAPU}]=Pr{X > z*, V= 0}
= Qz*,0:px,) )

where

—siny+ p, o8ty

S ©

Similarly, the probability Pr{« BPU} is obtained as

Pr{xBPU}|=Pr{Y > y*, V<0} @)
v —2pyvyv+v2

:/ m/ 0 ex"[_ 2] dvd
y* Y e 2m /1= pyy Y

where
_ 08 — Py Siny
Prv V1= pyysin2y ®)
Employing "> *2®%3%1 5 (7 gives
Pr{x BPU)}= A0~ pyy). )

Next, applying "> ¢ @9 5 (5) and (9),
respectively, and using the trigonometric identity for
sin"'¢+cos '¢=n/2 yield the result in the Craig
form as

2sin’0

L pooson 2 ) (10)
+— / exp|— do;
2rJ p( 2sin’f

z*¥> 0,9* = 0.

1 Lﬂ‘-sin'lp_w *2
Qla*,y*5p) = —/ ? exp(- x—)dﬁ
2 J

Finally, letting z*=z and y*=y and substituting

cosyp =xz/vVal+47 and sing=y/Ve®+4 into (10)

result in an alternative expression for the Craig form

presented in (3) as

R Y Wy
Qla.y:p) 2mJ b 2sin’9
cos B 11
1 (vﬁ—zmw;f)ex (7 i )9. an
p ) )
2 J 2sin’g

z=0,y=20.

Note that the alternative expression of (11) do not
require the user-defined arc tan function such as the

upper limit of (3).
IV. Conclusion

The main contribution of this paper is the
geometric derivation of the Craig form for the 2-D
Gaussian Q-function by wusing the rotation of
Cartesian coordinates. The new derivation leads to
the alternative Craig representation of the 2-D
Gaussian Q-function with geometric interpretation.
The derived expression can be applicable to the
exact computation of the probability represented by
the 2-D Gaussian Q-function.
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