• Title/Summary/Keyword: 기준선량

Search Result 590, Processing Time 0.098 seconds

Calibration Examination of Dose Area Product Meters using X-ray (X선을 이용한 면적선량계의 교정 연구)

  • Jung, Jae Eun;Won, Do-Yeon;Jung, Hong-Moon;Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • We measured the absorbed dose and the area dose using an ionization chamber type of area dose product (DAP) meter and measured the calibration factor in the X-ray examination. In the indirect dose measurement method, the detector was installed in the radiation part of the X-ray equipment, and the measured value was calculated as the dose at the exposure part. The instrument used to calculate the calibration factor was an X-ray equipment (DK-550R / F, DongKang Medical Co., Ltd., Seoul, Korea). The calibration method for the calibration factor was to connect the DAP meter (PD-8100, Toreck Co. Ltd., Japan) to the calibration dosimeter tube voltage of 70 kV, tube current of 500 mA, 0.158 sec. The reference dosimeter used a semiconductor (DOSIMAX plus A, Scanditronix, $Wellh{\ddot{o}}fer$, Germany). After installing the DAP meter on the front of the multi-collimator of the ionization chamber, the calibration factor of the dosimeter was obtained using the reference dosimeter for accurate dose measurement. Experimental exposure values and values from the calibration dosimeter were calculated by multiplying each calibration factor. The calibration factor was calculated as 1.045. In order to calculate the calibration coefficient according to the tube voltage in the ionization type DAP dosimeter, the absorbed dose and the area dose were calculated and the calibration factor was calculated. The corrective area dose was calculated by calculating the calibration factor of the DAP meter.

Comparison of ESD and Major Organ Absorbed Doses of 5-Year-Old Standard Guidelines and Clinical Exposure Conditions (소아 5세 표준촬영 가이드라인과 임상 촬영조건의 입사표면선량과 주요 장기흡수선량 비교)

  • Kang, A-Rum;Lee, In-Ja;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.355-361
    • /
    • 2017
  • Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

Feasibility Study of Isodose Structure Based Field-in-Field Technique for Total Body Irradiation (전신조사방사선치료 시 Isodose Structure를 이용한 Field-in-Field Technique의 유용성 평가)

  • Lee, Yoon Hee;Ban, Tae Joon;Lee, Woo Seok;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: In Asan Medical Center, Two parallel opposite beams are employed for total body irradiation. Patients are required to be in supine position where two arms are attached to mid axillary line. Normally, physical compensators are required to compensate the large dose difference for different parts of body due to the different thicknesses compared to the umbilicus separation. There was the maximum dose difference up to 30% in lung and chest wall compared to the prescription dose. In order to resolve the dose discrepancy occurring on different body regions, the feasibility of using Fieid-in-Field Technique is investigated in this study. Materials and Methods: CT scan was performed to The RANDO Phantom with fabricated two arms and sent to Eclipse treatment planning system (version 10.0, Varian, USA). Conventional plan with physical lead compensator and new plan using Field-in-Field Technique were established on TPS. AAA (Anisotropic Analytical Algorithm) dose calculation algorithm was employed for two parallel opposite beams attenuation. Results: The dose difference between two methods was compared with the prescription dose. The dose distribution of chest and anterior chest wall uncovered by patient arms was 114~124% for physical lead compensator while Field-in-Field Technique gave 106~107% of the dose distribution. In-vivo dosimetry result using TLD showed that the dose distribution to the same region was 110~117% for conventional physical compensator and 104~107% for Field-in-Field Technique. Conclusion: In this study, the feasibility of using FIF technique has been investigated with fabricated arms attached Rando phantom. The dose difference was up to 17% due to the attached arms. It is shown that the dose homogeneity is within ${\pm}10%$ with the CT based 3-dimensional 4 step FIF technique. The in-vivo dosimetry result using TLD was showed that 95~107% dose distribution compared to prescription dose. It is considered that CT based 3-dimensional Field-in-Field Technique for the total body irradiation gives much homogeneous dose distribution for different body parts than the conventional physical compensator method and might be useful to evaluate the dose on each part of patient body.

  • PDF

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation (전신방사선조사(Total Body Irradiation) 시 Beam Spoiler와 환자 간의 거리에 관한 고찰)

  • Choi, Jong-Hwan;Kim, Jong-Sik;Choi, Ji-Min;Shin, Eun-Hyuk;Song, Ki-Won;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 2007
  • Purpose: Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Materials and Methods: Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = $40{\times}40cm^2$. The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Results: Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is $14.58{\sim}14.92cGy$. Therefore, The surface dose was measured $99.4{\sim}101%$ with got near most to the prescription dose. Conclusion: In clinical case, distance between beam spoiler and patient affect surface dose. If once $50{\sim}60cm$ of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  • PDF

고체 팬톰을 이용한 방사선치료계획시스템의 정도관리

  • 이상훈;조광환;조삼주;최진호;추성실;권수일;신동오
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.65-65
    • /
    • 2003
  • 목적 : 방사선치료기술이 날로 발전함에 따라 방사선치료계획시스템에 대한 주기적인 정도관리의 필요성은 증대하고 있으나, 국내 실정에 적합한 표준화된 정도관리절차서가 없는 실정이다. 따라서 본 연구에서는 방사선치료계획용 시스템에 대한 정도관리용 고체팬톰을 제작하여 주기적인 정도관리 활용 및 절차서를 제시하고자 한다. 대상 및 방법 : 체윤곽 보정을 위한 삼각기둥 모형 (30cm$\times$30cm$\times$5cm, 30cm$\times$15cm$\times$5$\times$) 및 정형ㆍ부정형, 불균질 측정이 가능한 물등가고체팬톰을 제작하였고, 컴퓨터단층촬영(AcQsim)을 통해 영상을 얻었으며, RTPS(AcQplan)에 입력하여 영상 내 기준점에서의 선량값을 계산하였다. RTPS를 통해 계산된 값의 평가를 위해 동일한 조건하에서 각 기준점에 대한 실제 측정을 이온함을 이용하여 측정하였다. 평가 항목으로는 정방형 조사면, 부정형 조사면, 쐐기 조사면, 불균질 물질 보정, 사방향 조사 등에 대해서 알고리즘별로 수행하였다. 결과 : RTPS를 이용하여 계산된 값과 실제 측정한 값을 비교하여 RTPS의 정확성을 평가한 결과로 합성의 불확도 허용 기준 (3%), 선속 중심축 상에서의 허용 기준 (2%) 등, 선진 각국 및 각 학회에서 권고하고 있는 허용 범위 내에서 잘 일치하였다. 결론 : RTPS는 측정된 심부선량과 선량분포 등 물리적인 인자에 의존하는 제한성이 있고, 실제로 선량계산 알고리즘과 기하학적 변화에 따라 계산값과 측정값 간에 차이가 발생할 수 있었다. 실제 인체의 체윤곽 불균일성과 불균질성을 모사한 팬톰을 제작하여 이용함으로써 다양한 RTPS간의 비교를 통한 치료 선량의 정확성을 평가하고, 방사선 치료의 원활하고 정확한 수행을 위해 실용적이고, 보편적인 치료계획 시스템의 정도관리 방법과 절차서를 수립하는데에 유용할 것으로 사료된다.

  • PDF

A Study on Radiation Beam Quality Set-up of Mammography Equipment and Average Glandular Dose (유방 촬영 장치의 국제 규격 Beam Quality 기준에 따른 평균 선량 평가에 관한 연구)

  • Park, Yoon-Hee;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.303-308
    • /
    • 2022
  • Mammography using X-rays is currently the most used for early diagnosis of breast cancer. As the frequency of use of X-ray devices increases, interest in radiation hazards caused by mammography is increasing. Therefore, in this study, in order to measure the exposure dose of the mammary gland in X-ray mammography that requires high contrast and high resolution, the international Atomic Energy Agency (IAEA) stipulates the international standards presented by IEC 62220-1-2: 2015. Based on the beam quality criteria of the recommendation, we tried to present a guideline for evaluating the average mammary gland dose. As a result, the average streamline dose value of the 4.5 cm PMMA phantom was 2.3 mGy at the maximum within the 30 kV range, and was evaluated to be 1.19 mGy based on 28 kV.

Reference levels for patient Radiation Dose in interventional radiological procedures (중재적 방사선 시술 시 환자선량에 대한 참고 준위 비교)

  • Park, Hyeok;Kim, Yong-Wan;Jeon, Ju-Seob
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • The purpose of this study is to measure and evaluate radiation dose on patients in interventional radiological(IVR) procedures classified by each procedure, and aid as data for safety management. Fluroscopy time(F-time), dose area product(DAP) and number of acquired images from each kind of procedure was checked. Non-vascular procedures showed low value, and vascular procedure showed high value in all procedures except in IVC filter. F-time was longest in EVAR, which showed also the highest DAP value of all procedures. DAP-rate showed high value in TACE. By this result, we attempt to establish standard guideline of radiation dose on patients in IVR procedure.

Dose Evaluation Using Mathematical Simulation of Radiation Exposure Body in Mammography System (유방영상시스템에서 수학적 모의피폭체를 이용한 선량평가)

  • Lee, Jinsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • Mammography is mostly performed by series projection on both breasts. While taking mammography, it is less than average glandular dose of 3 mGy which regulated. But mammography is exposed much more doses actually, due to additional or series projection. Also, it is difficult to recognize around organ dose except exposed breast. Using mathematical simulation of radiation exposure body in mammography, we studied around organ dose distribution by changing thickness(25, 30, $50{\mu}m$) of filter and relative absorption dose rate which set on basis of exposed breast. as a result, when setting of basis of exposed breast, dose of opposite breast is more affected approximately from 79.26 to 86.31%. when using $25{\mu}m$ of filter thickness than $30{\mu}m$, $50{\mu}m$ of filter thickness in Mo/Mo, W/Rh combination which used actually, absorbed dose rates for opposite breast and around organ were low.

The Study of Radiation Exposure Reduction by Developing Corpus Striatum Phantom (두개골-선조체 팬텀을 이용한 선량 저감화 방안 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The study is to produced a brain phantom simulating corpus striatum, which can evaluate the progression of parkinson's disease, to investigate possibility of reducing the brain exposure dose to CT while maintaining optimal image quality during PET-CT examinations. CT scans were performed by varying tube voltage (100, 120 kVp) and tube current (80, 140, 200 mAs) with $^{18}F$ FP-CIT injected into the phantom's hot sphere and background (radioactivity ratio 3:1)(reference condition; 120 kVp, 140 mAs). Estimated effective dose was calculated by using conversion factor according to each condition, and image quality was evaluated by setting SNR and CRChot image evaluation factors. Experimental results showed that the predicted effective dose below the CT imaging reference condition was reduced by at least 10% and by up to 60%, and the predicted effective dose beyond the reference condition was increased by 40%. In addition, there was no significant difference between SNR and CRChot of PET images, and it was confirmed that brain dose decreased with decrease of tube voltage and tube current. At the same time, there was no significant change in the quality of the image in terms of SNR and CRChot despite the change in scan conditions. This fact suggests that the quality of the images acquired under the existing dose conditions can be obtained even at low dose conditions and it is expected that it will be possible to use the brain PET-CT scan as a basic data for the research on reduction of dose and improvement of image quality.