• Title/Summary/Keyword: 기어피팅수명

Search Result 10, Processing Time 0.033 seconds

Pitting Life Experiments of Gear Material using a Damaged Area Analysis Method (피팅 파손면적분석기법을 이용한 기어재의 피팅 수명 실험)

  • Joo, Jin-Wook;Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.92-97
    • /
    • 2010
  • The object of this study is to investigate the definite method for pitting damaged surfaces. Pitting is a sort of fatigue damages and it is made by a repetitive load. For a judgment between damages or not, sensing vibrations of test equipment is simple. However, it is not only difficult to observe a growth of pitting but also impossible to detect the juncture of initial pitting. Therefore, a method for the pitting damaged area measuring technique was effectively implemented by Two Roller Machine. The change of surface damaged area was measured by an optical microscope in regular time and calculated by the use of dark and bright ratio of test specimens' pictures taken by optical microscope. In conclusion, S - N Curves gained by Failure rate - Cycle graph was led and the curves are able to be chosen as occasion demands for a failure area percentage.

A Study for Influences of Supplied Lubricant Quantities on Pitting Life of Spur Gears (윤활유 공급량에 따른 스퍼 기어의 피팅 수명에 관한 연구)

  • Joo, Jin-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.40-44
    • /
    • 2011
  • The object of this study is to investigate influences of supplied lubricant quantities on spur gear's pitting life. Pitting is a sort of contact fatigue failures and made by a repetitive load. Basically, pitting is difficult to predict its life by an analysis due to many factors to be considered about tribology problems. In this paper, pitting life was proved by experiment using two roller machine. For a contact fatigue test, operating circumstances should be considered. During the test, temperature and lubricant quantities are considered and to investigate an influence of lubricant quantities, a comparison between optimally enough and not enough lubricant quantity was implemented.

Contact Surface Fatigue Life for RPG System (RPG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kwon, Soon-Man;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1453-1459
    • /
    • 2011
  • A roller pinion gear (RPG) system composed of either a pin or a roller and its conjugated cam gear can improve the gear endurance from that of a conventional gear system by reducing the sliding contact while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection condition obtained when the profile shift coefficient is introduced. Then, we investigated the Hertzian contact stresses and the load stress factors while the varying the shape design parameters to predict the gear surface fatigue life, which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Contact Fatigue Life for CRG System (CRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1391-1397
    • /
    • 2012
  • A cam ring gear (CRG) system based on a hypotrochoid curve consists of a pinion with roller teeth and its conjugated internal CRG. In this study, we investigated contact forces, contact stresses, and load stress factors to predict the surface pitting life using an exact CRG profile by introducing the profile modification coefficient. The results show that the pitting life can be extended significantly by increasing the profile modification coefficient without any other change of parameters in the CRG system.

Experiments and Prediction of Pitting Life in Spur Gears (스퍼기어의 피팅 수명 예측 및 실험)

  • Kim, Jong-Sung;Ju, Jin-Wook;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.399-403
    • /
    • 2009
  • The objective of this paper is to predict pitting initiation by using a contact analysis and subsurface stress. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions. Subsurface stress field is obtained using rectangular patch solutions. It is used Mesoscopic multiaxial fatigue criterion to predict contact fatigue life. It is important to predict pitting initiation to enhance reliability of the mechanical elements. Pitting life prediction in the spur gears which are fundamental mechanical element is presented in this paper.

Contact Fatigue Life for RRG System (BRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Linear Drive Systems using Roller Gear Mechanism (롤러 기어 메커니즘을 이용한 직선이송시스템)

  • Kim, Chang-Hyun;Nam, Hyoung-Chul;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.702-707
    • /
    • 2012
  • This paper considers two linear drive systems using roller gear mechanism(RGM), one is the RRP(roller rack pinion) system that consists of a roller rack and a cam pinion, the other is the CRP(cam rack pinion) system that consists of a cam rack and a roller pinion. Through the comparison of contact forces and load-stress factors between two linear drive systems, it reveals that the RRP system is superior to the CRP system in the aspect of the bending strength, while the CRP system has higher contact fatigue resistance than that of the RRP system.