• Title/Summary/Keyword: 기본 전위

Search Result 87, Processing Time 0.025 seconds

The Characteristics Analysis of Novel Moat Structures in Shallow Trench Isolation for VLSI (초고집적용 새로운 회자 구조의 얕은 트랜치 격리의 특성 분석)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2509-2515
    • /
    • 2014
  • In this paper, the conventional vertical structure for VLSI circuits CMOS intend to improve the stress effects of active region and built-in threshold voltage. For these improvement, the proposed structure is shallow trench isolation of moat shape. We want to analysis the electron concentration distribution, gate bias vs energy band, thermal stress and dielectric enhanced field of thermal damage between vertical structure and proposed moat shape. Physically based models are the ambient and stress bias conditions of TCAD tool. As an analysis results, shallow trench structure were intended to be electric functions of passive as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage, are decreased the stress effects of active region. The fabricated device of based on analysis results data were the almost same characteristics of simulation results data.

Recent Perspectives on Oncoplastic Breast Surgery in Korea (우리나라의 종양성형학적 유방암 수술에 대한 최신 동향)

  • Kang, Taewoo
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.563-569
    • /
    • 2020
  • Oncoplastic surgery (OPS) combines oncologically safe tumor resection with aesthetically satisfying reconstruction of defects using established plastic surgery techniques. OPS is characterized by initial excision as extensive as is beneficial for oncological safety, and, once sufficient resection is complete, displacement or replacement techniques are selected based on remnant volume. The size of the lesion and the individual patient are important factors when considering the appropriate approach, and when pre-operative imaging, including MRI, is used to determine the technique, the complete removal of cancer cells by permanent pathology is essential. A frozen section is used during the operation to reduce the reoperation rate, but it is difficult to cover the entire margin surface theoretically and even harder in practice. A recent report about adequate margins has empowered OPS in its oncological safety. Considering the patients to whom each modality could be applied, basic breast volume is an important factor, and this is influenced by ethnic differences. In Europe or the US, for example, the average breast size is 36D (600 ㎤) and reduction mammoplasty is predominantly used. However, the average size of patients in our institution is 33A (300 ㎤), and so quite different approaches are selected in most cases. New techniques involving radiofrequency and fluorescence have been proposed as safe and easily accessible ways of reducing complications.

K+ Ion-Selective PVC Membrane Electrodes with Neutral Carriers (중성운반체를 이용한 K+ 이온선택성 PVC막 전극)

  • Kim, Yong-Ryul;Cho, Kyoung-Sub;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.734-741
    • /
    • 1998
  • Electrode characteristics were studied in the interface between sample solutions and $K^+$ ion selective PVC membrane electrodes containing neutral carriers, dibenzo-18-crown-6(D18Cr6) and valinomycin(Val). The effect of doping of base electrolytes, the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, and concentration variation of sample solution on the response characteristics of electrode such as the measured Nernstian slope, the detection limit, the linear response range, and potentiometric selectivity coefficients, were studied. In order to synthesize the membrane D18Cr6 and Val as neutral carriers were used, and complex between the carrier and $K^+$ ions were used as active materials. PVC membrane electrodes were made of plasticizers (DBP, DOS, and DBS), the base electrolyte[potassium tetraphenylborate(KTPB)], and solvent(THF). The chemical structure of carrier D18Cr6 was best for electrode and ideal electrode characteristics were appeared especially in case of doping of TPB. The optimum carrier content was about 3.23 wt % in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the electrode characteristics was improved. But its characteristics were lowered below the optimum membrane thickness because of the elution of carrier, deterioration of membrane strength, etc. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were in the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Curvature stroke modeling for the recognition of on-line cursive korean characters (온라인 흘림체 한글 인식을 위한 곡률획 모델링 기법)

  • 전병환;김무영;김창수;박강령;김재희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.140-149
    • /
    • 1996
  • Cursive characters are written on an economical principle to reduce the motion of a pen in the limit of distinction between characters. That is, the pen is not lifted up to move for writing a next stroke, the pen is not moved at all, or connected two strokes chance their shapes to a similar and simple shape which is easy to be written. For these reasons, strokes and korean alphabets are not only easy to be changed, but also difficult to be splitted. In this paper, we propose a curvature stroke modeling method for splitting and matching by using a structural primitive. A curvature stroke is defined as a substroke which does not change its curvanture. Input strokes handwritten in a cursive style are splitted into a sequence of curvature strokes by segmenting the points which change the direction of rotation, which occur a sudden change of direction, and which occur an excessive rotation Each reference of korean alphabets is handwritten in a printed style and is saved as a sequence of curvature strikes which is generated by splitting process. And merging process is used to generate various sequences of curvature strikes for matching. Here, it is also considered that imaginary strokes can be written or omitted. By using a curvature stroke as a unit of recognition, redundant splitting points in input characters are effectively reduced and exact matching is possible by generating a reference curvature stroke, which consists of the parts of adjacent two korean alphasbets, even when the connecting points between korean alphabets are not splitted. The results showed 83.6% as recognition rate of the first candidate and 0.99sec./character (CPU clock:66MHz) as processing time.

  • PDF

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

Electrorefining Behavior of Zirconium Scrap with Multiple Cathode in Fluoride-Based Molten Salt (불화물계 용융염을 이용한 지르코늄 스크랩의 다중전극 전해정련 거동)

  • Park, Dong Jae;Kim, Seung Hyun;Park, Kyoung Tae;Mun, Jong Han;Lee, Hyuk Hee;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • The production of nuclear fuel cladding tube is expected to increase with the nuclear power plant expansion. Zirconium(Zr) scrap that is generated during manufacturing is also expected to increase. Zr electrorefining experiment was carried out in the fluoride salt of LiF-KF-ZrF4 using multiple electrode for scale up and improving throughput Zr electrorefiner develop-ment. The Zr reduction peak observed at-0.8 V(vs.Ni). Polarization behavior showed that the amount of applied current increases because of decreasing cell resistance as the number of cathode increases. Experimental results showed the highest recovery rate about 98% at lowest current density of 25.64 mA/cm2 using 6 electrodes. XRD and TG analysis result show that pure Zr was recovered 99.92% and ICP analysis shows that lower impurity content than conventional impurity content of the Anode(97.8%). Electrorefining consumes energy about 7.15 kWh/kg less than 39.7% compared to the Kroll process using 6 electrode width of 20 mm and height of 65 mm. Because of increasing cell efficiency and recovery rate, using multiple cathode is determined as an efficient technique for scale up electrorefining Zr scrap.

A study on the expansion of spatial expression in webtoon (웹툰에서의 공간 표현의 수직적 확장에 대한 연구: 강도하의 <로맨스 킬러>, <큐브릭>을 중심으로)

  • Seo, Che-Hwan;Ham, Jae-Min
    • Cartoon and Animation Studies
    • /
    • s.20
    • /
    • pp.63-74
    • /
    • 2010
  • For several decades in history of cartoon, it was about the era of publishing tendency based on printing technique just until few years before now. The media critic Marshall McLuhan said, "The cartoon of the 20th century have characters of printing or woodblock printing yet. Coming in to the 1980s, unlike traditional printing, cartoons of more various form appeared such as 'Moving cartoon, CD-ROM cartoon, Click-cartoon'. These phenomenons diversified and accelerated during the electronic equipments and internet that cartoon were able to be produced and distributed on not printing forms were progressing and popularizing. Like these, base on the progress of various forms in webtoon, this study will suggest 3 concept about expansion of Spatial Expressions of expression and cognition such as 'Reminiscent of The Vertical Image', 'The Vertical Panorama' and 'The Morphing into Spaces'. Also, , , the works of Doha Kang who is in the spotlight as the webtoonist of avant-garde and dynamic works, will be examined and analysed as the texts. Doha Kang was selectied as a 'Contemporary Twenty Webtoonist in Korea' from a survey of the cartoon's experts in korea by Bucheon Cartoon Information Center in 2009. He has recognized as the most experimental and be influential webtoonist from beginning of webtoon era to today. In this context, the analyses of his two works that was published in 2007, 2009 each, will helps understanding from diverse viewpoint about webtoon's expressions and structures. Furthermore, this study helps focus on values of webtoon as expansion art of Spatial Expression.

  • PDF

Effect of pH on Physical Properties of Triethanolamine-Ester Quaternary Ammonium Salt Cationic Surfactant System (수용액의 pH가 Triethanolamine-Ester Quaternary Ammonium Salt 양이온 계면활성제 시스템의 물성에 미치는 영향에 관한 연구)

  • Kim, JiSung;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.479-485
    • /
    • 2009
  • In this study, basic physical properties were measured for ASCO EQ85 cationic surfactant of triethanolamine-ester quaternary ammonium salt and effect of pH on softening performance on fabrics was investigated using zeta potential measurement and adsorption experiment by quartz crystal microbalance. The CMC of the surfactant was near $3{\times}10^{-3}mol/L$ and the surface tension at CMC was about 40 mN/m. The interfacial tension measurement between 1 wt% aqueous solution and n-dodecane measured by spinning drop tensiometer showed that interfacial tension slightly increased with an increase in pH but the equilibration time was not affected by pH. The surfactant adsorption was found to increase with an increase in surfactant concentration and was also affected by pH of surfactant solution. The friction factor for fabrics treated with ASCO EQ85 surfactant was shown to increase with pH and better softening effect was found under acidic conditions. Half-life for foams generated with ASCO EQ85 surfactant solution increased with pH, which indicated an increase in foam stability with pH.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF