• Title/Summary/Keyword: 금속광물

Search Result 360, Processing Time 0.027 seconds

The Oxidation of Chalcopyrite and Geochemical Behavior of Heavy Metals in the Manjang Cu Mine (만장광산에서 산출되는 황동석의 산화과정과 중금속 거동 특성)

  • 이평구;이인경;최상훈;김지수
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.291-301
    • /
    • 2004
  • In order to charaterize weathering of chalcopyrite and behavior of dissolved metal ions in waste rocks from Manjang Cu mine, mineralogical studies such as refractive microscope, XRD and SEM/EDS analyses carried out. The weathering was mainly occurred in fractures and edge of the chalcopyrite within the mine waste rocks. The weathering process can be seen to reflect four stages based on the weathering degree of chalcopyrite. The main secondary minerals are goethite, covellite, azurite, malachite and brochantite. Dissolved Cu and As were mainly adsorbed Fe-hydroxide. Poorly crystalline Fe-oxide contains relatively high As contents. In oxdizing condition, the weathering of chalcopyrite mainly occurs along the fracture, while the replacement of chalcopyrite observed mainly in the grain and produced covellite and brochantite. The dissolved metals (Cu, Fe, As) in waste rocks from the abandoned Manjang mine area could attenuate naturally by precipitation, adsorption and replacement reaction.

Thiobacillus와 종속영양 미생물의 상호작용에 대하여

  • 이홍금
    • The Microorganisms and Industry
    • /
    • v.16 no.2
    • /
    • pp.14-16
    • /
    • 1990
  • 미생물을 이용한 광물의 제련(microbial leaching)은 미생물의 몇가지 기전에 의해 광물성 sulfide를 산화시킴으로써 금속을 수용화시키는 과정이다. 이 방법은 현재는 구리나 우라늄 제련에 이용되고 있으며 광물질에 금속의 함량이 낮을 때 재래적 화학적 처리로 제련하는 것에 비해 훨씬 경제적이므로 앞으로의 자원획득문제에 기술적 및 생태적 중요성을 갖고 있다. 본 연구에서는 호산성의 Thiobacilli와 같은 biotope에 생존하는 종속영양미생물을 분리한 후 혼합 배양을 통해 Thiobacilli의 일차 생산자로서의 역할및 이때 생성된 유기물의 영향및 종속영양 미생물이 Thiobacilli에 미치는 영향에 대해 조사하고자 하였다.

  • PDF

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Rare Metal Chemistry, Microstructures, and Mineralogy of Coal Ash from Thermal Power Plants of Korea (화력발전소 석탄회의 희유금속화학, 미세구조, 광물학적 특성)

  • Jeong, Gi Young;Kim, Seok-Hwi;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 2015
  • Chemical and mineralogical properties of coal ash samples from the nine thermal power plants of Korea were investigated to acquire basic data for estimating the potential of rare metal recovery. Chemical compositions of coal ash were consistent with those of average shale and foreign coal ashes. However, there were small differences between the metal contents of domestic anthracitic and imported bituminous coal ashes. Unburned coal particles were much abundant in the ash of domestic anthracitic coal. Chalcophile elements were relatively enriched in the fly ash compared to bottom ash. Silicate glass was the major component of coal ash with minor minerals such as quartz, illite (muscovite), mullite, magnetite, lime, and anhydrite. Al and Si were the major components of the glass with varying contents of Ca, Fe, K, and Mg. Glass occurred in a form of porous sphere and irregular pumace-like grain often fused with iron oxide spheres or other glass grains. Iron oxide spheres were fine intergrowth of fast-grown iron oxide crystals in the matrix of silicate glass. Chemical, microstructural, and mineralogical properties would guide successful rare metal recovery from coal ash.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Geology and Metallic Mineral Resources of Sinaola State in Mexico (멕시코 시나올라주의 지질 및 금속광물자원)

  • Nam, Hyeong-Tae;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.257-266
    • /
    • 2013
  • The geology of Sinaola state consists of Precambrian metamorphic rocks(Sonobari Complex), two Paleozoic units(lower non-differentiated metamorphic rocks and upper Carboniferous sedimentary rocks), five Mesozoic units(metavolcanic, clastic, and calcareous rocks), Cenozoic volcanic rocks, and Quaternary clastic sediments and volcanic flows. The Sinaola state is potentially rich in metallic mineral resources with lower degree of non-metallic mineral resources. They are related to a variety of geological environments and are mainly physiographically located on the Sierra Madre Occidental. Mainly known mineral deposits are of gold and silver followed by zinc, lead, copper and some iron. The state also has deposits of molybdenum, tungsten and bismuth that have been occasionally exploited. There is a reference of nickel and cobalt mineralization, but these deposits have been exploited only at a small scale.

A Study on the Mine Development of North Korea and the Inter-Korean Mineral Resources Cooperation (북한의 광물자원개발과 남북간 자원협력방안)

  • Kim You-Dong;Park Hong-Soo;Kim Seong-Yong;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.197-206
    • /
    • 2005
  • North Korea is plentiful in the mineral resources as magnesite, gold, zinc, iron, rare metal, and coal resources compared to South Korea and has 6 industrial zones which are located nearby to the mineralized areas. The industrial zones are provided with a sound infrastructures and accumulation of advanced technology. As a huge mineral and energy consuming country, South Korea imports mineral and coal resources equivalent to almost 8 trillion won annually. Inter-Korean cooperation for development of mineral resources in North Korea will be improved by the practical use of the North Korea's plentiful mineral resources, infiastructures related to development and refinement, and basic geo-technology, which would be considered toward combining with South Korean capital and Russian geo-technologies.

A Public-oriented e-marketplace Framework for the Mining Industry (광산업의 B2B 공적 e-Marketplace 프레임워크 구축에 관한 연구)

  • Park, Ki-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.53-61
    • /
    • 2006
  • We propose public-oriented e-Marketplace framework construction that activates efficiently transaction of non-metal industrial resources through the case of Mineralland. The firms of Non-metal industrial resources domain have low information level and weak capital structure. So public enterprise has to construct e-marketplace to trade using exact market information. This framework consists of five domains-contents, commerces, communities, collaboration and electronic authentication. To draw this framework, we review many web-sites and literatures about B2B of industrial resources domain. In addition, this study provides practical implications and guidelines for activating public oriented e-Marketplace of non metal industrial resources.

  • PDF