DOI QR코드

DOI QR Code

Rare Metal Chemistry, Microstructures, and Mineralogy of Coal Ash from Thermal Power Plants of Korea

화력발전소 석탄회의 희유금속화학, 미세구조, 광물학적 특성

  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Seok-Hwi (Institute for Advanced Engineering) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University)
  • Received : 2015.06.11
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

Chemical and mineralogical properties of coal ash samples from the nine thermal power plants of Korea were investigated to acquire basic data for estimating the potential of rare metal recovery. Chemical compositions of coal ash were consistent with those of average shale and foreign coal ashes. However, there were small differences between the metal contents of domestic anthracitic and imported bituminous coal ashes. Unburned coal particles were much abundant in the ash of domestic anthracitic coal. Chalcophile elements were relatively enriched in the fly ash compared to bottom ash. Silicate glass was the major component of coal ash with minor minerals such as quartz, illite (muscovite), mullite, magnetite, lime, and anhydrite. Al and Si were the major components of the glass with varying contents of Ca, Fe, K, and Mg. Glass occurred in a form of porous sphere and irregular pumace-like grain often fused with iron oxide spheres or other glass grains. Iron oxide spheres were fine intergrowth of fast-grown iron oxide crystals in the matrix of silicate glass. Chemical, microstructural, and mineralogical properties would guide successful rare metal recovery from coal ash.

석탄화력발전 부산물인 석탄회의 희유 금속 재활용을 위한 기반 연구로서 9개 발전소의 석탄회를 대상으로 화학적 및 광물학적 특성을 분석하였다. 석탄회의 희유원소 화학조성은 전반적으로 셰일의 평균 조성과 부합하며, 국외 석탄회와 차이도 거의 없다. 그러나 국산 무연탄 비산재와 수입 유연탄 비산재는 무기원소 조성에서 약간의 차이가 있으며, 무연탄 비산재의 미연 탄소 함유량이 매우 높다. 바닥재와 비교하여 친황원소들이 비산재에 부화되는 경향이 있다. 규산염 유리가 주요 고상이며, 석영, 일라이트(백운모), 멀라이트, 자철석, 생석회, 경석고가 광물로 함유되어 있다. 규산염 유리는 Al과 Si가 주성분이고, Ca, Fe, K, Mg가 다양한 비율로 함유되어 있다. 규산염 유리는 다공성 구형 또는 비정형 부석질 입자들이며, 흔히 잔존 광물이나 산화철구, 또는 다른 유리입자들과 융접되어 있다. 산화철구 입자는 급속 성장한 산화철 미세 입자와 유리 기질로 구성되어 있다. 석탄회로부터 유가 금속 재활용을 위해서는 이상의 화학조성, 미세조직, 광물학적 특성들이 고려되어야 한다.

Keywords

References

  1. Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36, 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
  2. Anders E. and Grevesse N. (1989) "Abundances of the elements: Meteoritic and solar". Geochimica Cosmochimica et Acta, 53, 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
  3. Brown, P., Jones T., and BeruBe, K. (2011) The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations. Environmental Pollution1, 59, 3324-3333.
  4. Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
  5. Feng, Z. and Gesser, H.D. (1996) Recovery of gallium from coal fly ash. Hydrometallurgy, 41, 187-200. https://doi.org/10.1016/0304-386X(95)00055-L
  6. Font, O., Querol, X., Lopez-Soler, A., Chimenos, J.M., and Fernandez, A.I. (2005) Ge extraction from gasification fly ash. Fuel, 84, 1384-1392. https://doi.org/10.1016/j.fuel.2004.06.041
  7. Giere, R., Carleton, L.E., and Lumpkin, G.R. (2003) Micro- and nanochemistry of fly ash from a coalfired power plant. American Mineralogist, 88, 1853-1865. https://doi.org/10.2138/am-2003-11-1228
  8. Iyer, R.S. and Scott, J.A. (2001) Power station flyasha review of value-added utilization outside of the construction industry. Resources, Conservation and Recycling, 31, 217-228. https://doi.org/10.1016/S0921-3449(00)00084-7
  9. Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry. McGraw-Hill, New York.
  10. Kwon, K.J. (2010) Utilization of fly ash & bottom ash as concrete materials. Review of Architecture and Building Science, 54, 46-49.
  11. Lee, G.H., Choi, S.K., Moon, H.-S., Lee, and S.H. (1997) Mineralogical and geochemical characteristics of PFA (pulverized fuel ash) from Yongwol power plant. Economic and Environmental Geology, 30, 443-450.
  12. Mattigod, S.V. (2003) Rare earth elements in fly ashes as potential indicators of anthropogenic soil contamination. In: Sajwan, K.S., Alva, A.K., and Keefer, R.E. (eds.), Chemistry of Trace Elements in Fly Ash, Kluwer Academic/Plenum Publishers, New York, 155-164.
  13. Meawad, A.S., Bojinova, D.Y., and Pelovski, Y.G. (2010) An overview of metals recovery from thermal power plant solid wastes. Waste Management, 30, 2548-2559. https://doi.org/10.1016/j.wasman.2010.07.010
  14. Nayak, N. and Panda, C.R. (2010) Aluminum extraction and leaching characteristics of Talcher thermal power station fly ash with sulphuric acid. Fuel, 89, 53-58. https://doi.org/10.1016/j.fuel.2009.07.019
  15. Tsuboi, I., Kasai, S., Kunugita, E., and Komosawa, I. (1991) Recovery of gallium and vanadium from coal fly ash. Journal of Chemical Engineering of Japan, 24, 15-20. https://doi.org/10.1252/jcej.24.15
  16. USGS (2011) Geochemical Database of Feed Coal and Coal Combustion Products (CCPs) from Five Power Plants in the United States. Data Series 635. US Geological Survey. http://pubs.usgs.gov/ds/635/
  17. Vassilev, S.V., Vassileva, C.G., Karayigit, A.I., Bulut, Y., Alastuey, A., and Querol, X. (2005) Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. International Journal of Coal Geology, 61, 35-63. https://doi.org/10.1016/j.coal.2004.06.004
  18. Yoon, C.H., Oh, K.C., Kim, J.B., and Shin, B.S. (1996) Trace elements and rare earth elements in coal fly ash from the Samcheonpo, Seocheon and Youngdong power plants. Journal of the Korean Society of Mineral and Energy Resources Engineers, 33, 82-89.

Cited by

  1. Amorphous Silica in Soil Silt vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.287
  2. 국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.68
  3. 석탄재에 포함된 희토류의 경제성 평가 vol.28, pp.6, 2019, https://doi.org/10.7844/kirr.2019.28.6.26