• Title/Summary/Keyword: 근전도 활성화

Search Result 21, Processing Time 0.03 seconds

Study on Forearm Muscles and Electrode Placements for CNN based Korean Finger Number Gesture Recognition using sEMG Signals (표면근전도 신호를 활용한 CNN 기반 한국 지화숫자 인식을 위한 아래팔 근육과 전극 위치에 관한 연구)

  • Park, Jong-Jun;Kwon, Chun-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.260-267
    • /
    • 2018
  • Surface electromyography (sEMG) is mainly used as an on/off switch in the early stage of the study and was then expanded to navigational control of powered-wheelchairs and recognition of sign language or finger gestures. There are difficulties in communication between people who know and do not know sign language; therefore, many efforts have been made to recognize sign language or finger gestures. Recently, use of sEMG signals to recognize sign language signals have been investigated; however, most studies of this topic conducted to date have focused on Chinese finger number gestures. Since sign language and finger gestures vary among regions, Korean- and Chinese-finger number gestures differ from each other. Accordingly, the recognition performance of Korean finger number gestures based on sEMG signals can be severely degraded if the same muscles are specified as for Chinese finger number gestures. However, few studies of Korean finger number gestures based on sEMG signals have been conducted. Thus, this study was conducted to identify potential forearm muscles from which to collect sEMG signals for Korean finger number gestures. To accomplish this, six Korean finger number gestures from number zero to five were investigated to determine the usefulness of the proposed muscles and electrode placements by showing that CNN technique based on sEMG signal after sufficient learning recognizes six Korean finger number gestures in accuracy of 100%.

Connectivity Analysis Between EEG and EMG Signals by the Status of Movement Intention (운동 의도에 따른 뇌파-근전도 신호 간 연결성 분석)

  • Kim, Byeong-Nam;Kim, Yun-Hee;Kim, Laehyun;Kwon, Gyu-Hyun;Jang, Won-Seuk;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • The brain and muscles both of which are composed of top-down structure occur the connectivity with the change of Electroencephalogram(EEG) and Electromyogram(EMG). In this paper, we studied the difference of functional connectivity between brain and muscles that by applying coherence method to EEG and EMG signals when users exercised upper limb with and without the movement intention. The changes in the EEG and EMG signals were inspected using coherence method. During the upper limb exercise, the mu (8~14 Hz) and beta (15~30 Hz) rhythms of the EEG signal at the motor cortex area are activated. And then the beta and piper (30~60 Hz) rhythms of the EMG signal are activated as well. The result of coherence analysis between EEG and EMG showed the coefficient of active exercise including movement intention is significantly higher than passive exercise. The coherence relations between cognitive response and muscle movement could interpret that the connectivity between the brain and muscle appear during active exercise with movement intention. The feature of coherence between brain and muscles by the status of movement intention will be useful in designing the rehabilitation system requiring feedback depending on the users' movement intention status.

A Convergence Study of Surface Electromyography in Swallowing Stages for Swallowing Function Evaluation in Older Adults: Systematic Review (노인의 삼킴 단계별 삼킴 기능 평가를 위한 표면 근전도 검사의 융합적 연구 : 체계적 문헌고찰)

  • Park, Sun-Ha;Bae, Suyeong;Kim, Jung-eun;Park, Hae-Yean
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.9-19
    • /
    • 2022
  • In this study, a systematic review was conducted to analyze the method of applying sEMG to evaluate the swallowing function of the elderly at each stage of swallowing, and to help objectively measure the swallowing stage of the older adults in clinical practice. From 2011 to 2021, 7 studies that met the selection criteria were selected using Pubmed, Scopus, and Web of Science (WoS). As a result of this study, the older adults and adults were divided into an experimental group and a control group and the swallowing phase was analyzed using sEMG only for the older adults. sEMG was used to evaluate swallowing in the oral and pharyngeal stages, and the sEMG attachment site was attached to the swallowing muscle involved in each stage. The collected sEMG data were filtered using a bandpass-filter and a notch-filter, and were analyzed using RMS, amplitude, and maximum spontaneous contraction. In this study, it was found that sEMG can be used as a tool to objectively and quantitatively evaluate the swallowing function in stages. Therefore, it is expected that this study will activate various studies that incorporate sEMG to evaluate the swallowing function in stages.

A convergence study of the effect of movement control exercise of hip joint using visual EMG biofeedback on hip rotators (근전도 바이오피드백을 적용한 엉덩관절 움직임 조절 운동이 엉덩관절 돌림근에 미치는 영향에 대한 융합적 연구)

  • Jung, Ju-Hyeon;Kang, Tae-Wook
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.183-189
    • /
    • 2019
  • The aim of this study was to determine the effects of movement control exercise of hip joint using visual EMG biofeedback on hip joint muscles in healthy adults. This study was nonequivalent one group Pre-post test design. Twenty-one healthy adults were participated in the study. all subjects conducted movemnet control exercise(MCE) using electromyography(EMG) biofeedback of hip joint durng 20 min. The outcome measures included surface eletromyography. Surface electromyography data were collected from the Gluteus medius (Gmed), Gluteus maximus (Gmax),and Tensor fasciae latae(TFL), rectus femoris(RF) during small knee bending (SKB) test. There was a significant difference in Gluteus maximus muscle activity between the pre-test and the post-test (p < 0.05). The findings suggest that Movement control exercise using EMG biofeedback for limiting hip internal rotation is effective in activating the hip external rotator muscles. in addition, this study showed that rehabilitation exercise combined with ICT convergence technology could be an effective intervention in clinical practice.

A Study of Relationship Between EMG Activation of Thigh Muscle(Rectos Femoris, Vastus Iateralis Muscles) and Knee Angle During Bicycle Exercise (대퇴근활성화에 대한 자전거 운동 시 근전도와 슬관절 각도와의 상관관계 연구)

  • Jang, Won-Seuk;Kim, Sung-Min;Kang, Seung-Ho;Kim, Nam-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, we investigated relationship of muscular activity in thigh muscle and knee joint angle from bicycle exercise. The EMG signals of 16 persons were measured from rectus femoris and vastus lateralis muscles. The experiment was performed in 5 steps according to saddle distance and 60RPM/200W loads were applied for 1 minute at each step. EMG activation of rectus femoris and vastus lateralis muscles and knee joint angle were recorded using surface EMG and motion analysis system, respectively. Experimental results of inter relationship between EMG activation of thigh muscles and knee joint angle showed high correlation from Step 1. The unified EMG activation of two muscles and knee joint angle showed negative correlation(-0.97).

Electroencephalogram(EEG) Activation Changes and Correlations of signal with EMG Output by left and right biceps (좌우 이두근의 근전도 출력에 따른 뇌파의 활성도 변화와 관련성 탐색)

  • Jeon, BuIl;Kim, Jongwon
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.727-734
    • /
    • 2019
  • This paper confirms whether the movement or specific operation of the muscles in the process of transferring a person from the brain can find a signal showing an essential feature of a certain part of the brain. As a rule, the occurrence of EEG(Electroencephalogram) changes when a signal is received from a specific action or from an induced action. These signals are very vague and difficult to distinguish from the naked eye. Therefore, it is necessary to define a signal for analysis before classification. The EEG form can be divided into the alpha, beta, delta, theta and gamma regions in the frequency ranges. The specific size of these signals does not reflect the exact behavior or intention, since the band or energy difference of the activated frequencies varies depending on the EEG measurement domain. However, if different actions are performed in a specific method, it is possible to classify the movement based on EEG activity and to determine the EEG tendency affecting the movement. Therefore, in this article, we first study the EEG expression pattern based on the activation of the left and right biceps EMG, and then we determine whether there is a significant difference between the EEG due to the activation of the left and right muscles through EEG. If we can find the EEG classification criteria in accordance with the EMG activation, it can help to understand the form of the transmitted signal in the process of transmitting signals from the brain to each muscle. In addition, we can use a lot of unknown EEG information through more complex types of brain signal generation in the future.

Study on the Strategy of Muscular Activity for Motor Track of Upper Limbs during Rowing Exercise (로잉운동 시 상지 운동궤적에 따른 근육활성 전략에 관한 연구)

  • Kang, S.R.;Kim, U.R.;Moon, D.A.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • The purpose of this study was to investigate the muscular activity and muscle strength for swing track of upper limbs during rowing exercise. Subject was all twenty healthy adults and they were divided into linear exercise group and elliptical exercise group in random. Subjects performed rowing exercise 3-times for a week and performed all 8-weeks. We measured realtime-surface EMG. Also we measured joint torque of elbow, ankle and lumbar in subjects using BIODEX. The result showed that when rowing exercise, elliptical track exercise had higher muscular activity in trapezius, deltoid, erector spinae, rectus femoris, biceps femoris, gastronemius than linear track exercise on more many muscle of upper and lower limbs. Also elbow joint torque and lumbar joint torque was more higher too. but linear exercise also had higher muscular activity in multifidus, tibilalis anterior than elliptical track exercise. According to this experiment, we found out that elliptical track was more efficient than linear track.

  • PDF

EMG Signal Analysis of Upper Extremity Motor Function using Balance-handle Device (밸런스 핸들 장치를 이용한 상지 운동 기능의 근전도 신호 분석)

  • Lee, Choong-Keun;Song, Ki-Ho;An, Jae-Yong;Shin, Sung-Wook;Chung, Sung-Taek
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2016
  • Rehabilitation of upper limb motor function of hemiplegic patient must maintain interest and demand a device for a quantitative evaluation of rehabilitation training. In this paper, we developed the device that is composed of arm cradle, handle, and balance ball for rehabilitation exercise. We have performed experiment for validity as to whether to use the rehabilitation device when tilting the upper extremity training device developed to measure changes in the EMG signal to the main upper limb muscles for 7 healthy volunteers. We have analyzed muscle activation signals on agonist and antagonist as a reference in the muscle contraction and relaxation in the upper limb extension and flexion when the balance-handle device is tilted to front-rear and left-right. The experimental results showed that a tendency of muscle activation of biceps, triceps, and deltoid used in upper limb motor function of hemiplegic patients from extension and flexion evaluation items of Fugl-Meyer Assessment(FMA). These results may be helpful for rehabilitation training for upper limb motor function of hemiplegic patients by utilizing a developed unit.

Effect on Activation of Abdominal Local Muscles During Modified Bridge Exercise in Healthy Individuals (변형된 교각운동이 복부 국소근육의 활성화에 미치는 효과)

  • Han, J.H.;Sung, Y.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.3
    • /
    • pp.215-222
    • /
    • 2015
  • The purpose of this study was to investigate abdominal local muscle activity during modified bridge exercise. 17 subjects participated in this study. Abdominal muscles measured. External oblique abdominis (EO), internal oblique abdominis (IO), transvers abdominis (TrA), and rectus abdominis (RA) during general bridge exercise and modified bridge exercise, respectively. Electromyogram (EMG) and real-time ultrasound were used to verify alteration of muscles. Activation of RA and EO muscles of non-dominant foot was significantly difference in general bridge exercise group, not modifiedl bridge exercise group. In the modified bridge exercise group, thickness of IO and TrA muscle of non-dominant foot was significantly difference in modified bridge exercise group than general bridge exercise group. Therefore, modified bridge exercise may be apply as more effective exercise for local muscle activity than global muscle.

  • PDF

Electromyographic Analysis of the Biceps Brachii during Provocative Tests (상완 이두 건 병변에 대한 유발 검사시의 근전도 분석)

  • Lee Young-Soo;Shin Dong-Rae;Cho Sang-Hyun;Nam Ki-Sun;Kim Sung-Jae
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.170-177
    • /
    • 1999
  • The electromyographic activity of four muscles(biceps, supraspinatus, infraspinatus and subscapularis) was mea­sured from non-dominant shoulders of 12 volunteers by six different provocative test for the biceps pathology. The provocative tests were Speed, Yergason, Ludington, Heuter, O'Brien and the abduction-extension test. Each test was performed in a force of 30% of maximal voluntary contraction. The levels of activity of the biceps were higher than those of the other rotator cuff muscles only in Speed's test: 28% in the biceps, 26% in the infraspinatus, 25% in the supraspinatus and 21 % in the subscapularis. The levels of activity of the biceps as a percent of MMT(maximal manual test) were higher in Speed's(42%) and O'Brien's test with the arm supinatecl(42%). Speed's test can isolate the activity of biceps better than the other tests but it is a nonspecific test by which the biceps tendon was also activated within other rotator cuff muscles.

  • PDF