• Title/Summary/Keyword: 굽힘 가공

Search Result 201, Processing Time 0.028 seconds

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

A Study on the Extru-Bending Process of the Angle Product with non-Symmetric "ㄱ" Section (비대칭 "ㄱ" 단면 앵글제품의 압출굽힘 가공에 관한 연구)

  • 이경국;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.277-280
    • /
    • 2003
  • It was investigated that the "ㄱ" type angle product could be bended with a curvature during extrusion by extru-bending process. The bending process for the "ㄱ" type angle product can be developed by the hot metal extru-bending machine with the two punches moving in the different velocity. Because of non-symmetry of product, it is important to design the ruled surface contour of dies cavity for the welding and bending with two billets. So it is designed that the multi-hole container has two non-symmetric holes and non-symmetric contour of dies entrance. The results of the experiment show that "ㄱ" type angle product can be bended by the extrusion process and that the curvature of the product can be controlled by the velocity of punch and that the defects such as the distortion of section and the thickness change of the product and the folding and wrinkling of the product did not happen after the bending processing by the extrusion bending machine.

  • PDF

Hot Metal Extru-Bending Process for the Aluminum Curved Tube Product (알루미늄 중공 곡관제품의 열간 압출굽힘가공)

  • 박대윤;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.359-362
    • /
    • 2003
  • The bending phenomenon has been known to be occurred by the different of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the cohesion of billet inside the porthole die chamber. The bending phenomenon can be controlled by the different hole diameter. The experiments using aluminium material for the curved tube product had been done. The results of the experiment show that the curved tube product can be formed by the extru-bending process without the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling. It is known that the welding and extruding of each billet has done simultaneously although the curved tube is extruded with four billets.

  • PDF

A Study on the Extru-Bending Process of the Product with "ㄱ" Section ("ㄱ" 단면 형상 제품의 압출굽힘 가공에 관한 연구)

  • 이경국;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.371-374
    • /
    • 2003
  • The bending process for the "ㄱ" section product can be developed by the hot metal extrusion machine with the two punches moving in the different velocity. The bending phenomenon can be controlled by difference of velocity at the die exit section by the different velocity of billets through the two-hole container. The results of the experiment show that "ㄱ" section product can be bended by the extrusion process and that the curvature of the product can be controlled by the velocity of punch and that the defects such as the distortion of section and the thickness change of the product and the folding and wrinkling of the product did not happen after the bending processing by the extrusion bending machine.

  • PDF

An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion (평다이를 사용한 편심 압출가공에서의 비유동 영역의 형상과 굽힘 속도 분포에 관한 상계해석)

  • Kim, Jin-Hoon;Jin, In-Tai
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.177-185
    • /
    • 1998
  • The kinematically admissible veolcity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric lane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal one are determined by the minimization of the plastic work and that the curvature of the extruded products increase with the eccentricity.

  • PDF

초음파 진동절삭의 특성에 관한 연구

  • 이규배;이계철;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.151-154
    • /
    • 1993
  • 지동 및 음향분야의 발달과 더불어 가청주파수 이상의 초음파에대한 연구가 여러분야에 걸쳐 다양하게 많은 학 자들에 의해진전되어 왔다. 이중에서 실용적인 초음파 장치가 처음으로 등장한 것은 1921년경 프랑스의 랑지방 (P. Langevin)에 의해 만들어진 초음파측심기라고 전해지고 있다. 당시 사용된 진동자는 두 장의 금속원판 사이에 수정을 샌드위치 형태로 만든것으로써 랑지방형 진동자라고 한다. 최근 각종기계의 경량화, 고도화, 고성능화가 요구 되면서 고인성, 고내열성, 고경도 등의 특성을 갖는 재료를 가공함에 있어서 저동력 및 고정밀도가 요구되고 있다. 본 연구에서는 선삭가공에서 초음파발생기에서 보낸 초음파신호를 초음파 진동혼의 설계에 의한 진폭을 증가시켜 사각형 단면을 갖는 양단자유지지 굽힘진동 공구홀더의 공진조건을 초음파 진동절삭 가공시스템에 적용시키는데 목표를 두며 또한 초음파 진동절삭을 적용시켰을 때의 절삭 특성을 규명하기 위하여 선정된 절삭조건으로 선삭할 때 발생하는 절삭분 력 및 표면거칠기를 측정하고 분석하여 그 결과로부터 절삭특성을 해석코자 본 연구를 수행하였다.

An Upper Bound Analysis of the Shapes of the Dead Metal Zone and the Curving Velocity Distribution in Eccentric Plane Dies Extrusion (평다이를 사용한 편심압출가공에서의 비유동영역의 형상과 굽힘속도분포에 관한 상계해석)

  • 김진훈;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.250-253
    • /
    • 1998
  • The kinematically admissible velocity field is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric plane dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric plane dies is caused by the eccentricity of plane dies. The axial velocity distribution in the plane dies is divided in to the uniform velocity and the deviated velocity. The deviated velocity is linearly changed with the distance from the center of cross-section of the workpiece. The results show that the curvature of products and the shapes of the dead metal zone are determined by the minimization of the plastic work and that the curvature of the extruded products increases with the eccentricity.

  • PDF

Study on the curving phenomenon of sylinderical product in extrusion process (원형제품의 압출가공시 제품의 굽힘현상에 관한 연구)

  • 최재찬;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.136-142
    • /
    • 1995
  • The kinematically admissible velocity field is developed for the analysis of extruded products. The curving of product in extrusion is caused by the linearly distributed longitudinal velocity on the cross-section of the workpiece at the die exit. In the analysis, the longitudinal velocity in extrusion direction is divided into the uniform velocity and the deviated velocity. In order to satify the requirement of the kinematically admissible velocity field, the average value of the deviated velocity should be zero. At the same time, it should Iinearly change with the destance from the center of gravity of the cross-section of the workpiece. The results of the analysis show that the curvature of product incresses with increses in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-sectio at the die exit.

  • PDF

Extru-Bending Process of Curved Product with Flanged Section by Asymmetric Shape of an Extrusion Billet (압출빌렛의 비대칭 형상에 의한 플랜지단면을 가지는 곡봉의 압출굽힘 가공)

  • Park D. Y.;Yun S. H.;Park J. W.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.139-144
    • /
    • 2005
  • It was investigated that curved aluminum products with 'ㄷ' section or with 'h' section could be bended during extrusion by the extru-bending process. In order to make bending at the exit section of die, the flow of billet inside die cavity was controlled by the shape of billet. As results of the analysis of $DEFORM^{™}-3D$, it was known that the bending phenomenon at the die exit can be happened by the asymmetric section of billet. And it was known by the experiment with plasticine or aluminum material that an symmetric product with 'c' channel section and the product with flanged 'h' section could be bended because of asymmetric shape of billet.