• Title/Summary/Keyword: 국방적용

Search Result 957, Processing Time 0.032 seconds

Enhancing Object Recognition in the Defense Sector: A Research Study on Partially Obscured Objects (국방 분야에서 일부 노출된 물체 인식 향상에 대한 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.77-82
    • /
    • 2024
  • Recent research has seen significant improvements in various object detection and classification models overall. However, the study of object detection and classification in situations where objects are partially obscured remains an intriguing research topic. Particularly in the military domain, unmanned combat systems are often used to detect and classify objects, which are typically partially concealed or camouflaged in military scenarios. In this study, a method is proposed to enhance the classification performance of partially obscured objects. This method involves adding occlusions to specific parts of object images, considering the surrounding environment, and has been shown to improve the classification performance for concealed and obscured objects. Experimental results demonstrate that the proposed method leads to enhanced object classification compared to conventional methods for concealed and obscured objects.

Study on improving passive sonar detection using acoustic vibration matching method for front and rear signal of complex sensor (복합센서의 전후방 신호에 대한 음향진동 정합기법을 이용한 수동소나 탐지성능 향상에 대한 연구)

  • Dongwan Seo;Woosuk Chang;Donghyeon Kim;Eunghwy Noh;Jeongeun Yang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.145-151
    • /
    • 2024
  • Recently, ship hull-mounted passive sonar system solution is needed in the perspective of improving target detection and elimination of vibration-induced noise. Our research team suggests acousticvibration matching method using front and rear signal of a sensor as the improvement of the problem above. Thus in this paper, theoretical background about matching method and its application on finite element method based multi-physics simulation are described. Furthermore, it is shown that target detection and hull vibration performance are improved by using matching method under the condition of our sensor system. Finally, practicality and future research are discussed.

Receiving Channel Calibration of Multi-Channel Integrated Receiver for Monopulse Radar (모노펄스 레이다용 다채널 집적 수신기의 수신 채널 보정)

  • Jinsung Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2024
  • The effect of inter-channel coupling in multi-channel monopulse receiver is expected to increase by miniaturization trend of receiver. Therefore, in this paper, calibration method is proposed to compensation for inter-channel coupling in receiver of monopulse radar. And it can prevent distortion of angle information of target. Hardware configuration that consists of switch, directional coupler, matched load, ADC(Analog to Digital Converter), signal source of calibration is proposed to calibration. Total nine scattering parameters are obtained by controlling the switch and signal source of calibration. After that, method for restoring the undistorted signal is proposed using the mathematical relationship between the monopulse signal output from the antenna and the monopulse signal passing through the multi-channel receiver in the presence of inter-channel coupling.

Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter (칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계)

  • Kyung-don Ryu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2024
  • INS(inertial navigation system) aligns itself using gravity and Earth's rotational rate from accelerometers and gyro sensors when stationary. Typically, ZUPT(zero velocity update), which is based on a linear error model Kalman filter, is used when it is stationary. However, such algorithms assume stationary conditions, leading to increased alignment errors or filter divergence during maritime mooring due to wave-induced motion. This paper designs a mooring alignment algorithm for maritime platforms using a Kalman filter, which uses large heading angle error model and an initial position correction technique. And it is validated by simulation. Furthermore, it is confirmed that applying this to a rotational INS dramatically improves performance through the principle of bias cancellation.

Inter-device Mutual Authentication and Formal Verification in Vehicular Security System (자동차 보안시스템에서 장치간 상호인증 및 정형검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • The auto industry has significantly evolved to the extent that much attention is paid to M2M (Machine-to-Machine) communication. In M2M communication which was first used in meteorology, environment, logistics, national defense, agriculture and stockbreeding, devices automatically communicate and operate in accordance with varying situations. M2M system is applied to vehicles, specifically to device-to-device communication inside cars, vehicle-to-vehicle communication, communication between vehicles and traffic facilities and that between vehicles and surroundings. However, communication systems are characterized by potential intruders' attacks in transmission sections, which may cause serious safety problems if vehicles' operating system, control system and engine control parts are attacked. Thus, device-to-device secure communication has been actively researched. With a view to secure communication between vehicular devices, the present study drew on hash functions and complex mathematical formulae to design a protocol, which was then tested with Casper/FDR, a tool for formal verification of protocols. In brief, the proposed protocol proved to operate safely against a range of attacks and be effective in practical application.

Intelligent Navigation Safety Information System based on Information-Fusion Technology (정보융합 기술 기반의 지능형 항행안전정보 시스템)

  • Kim, Do-Yeon;Jo, Dae-Woon;Yi, Mi-Ra;Park, Gaei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.226-233
    • /
    • 2010
  • The study of information fusion technology, which merges various types of data to recognize a situation more exactly, has begun in the area of national defense. Recently, the concept of information fusion is getting applied to other fields, and we are interested in maritime safety. In navigation, officers receive data about inside and outside of ship from several devices in bridge, and use it to recognize and predict the safety situation. However, too much and fast updated data might even fatigue mates, and there is the problem of inconsistency among data from several types of devices. This paper introduce how can use information fusion technology for the situation awareness and prediction of navigation safety, and show the realization possibility of Intelligent Navigation Safety Information System through an information fusion example in a specific situation scenario.

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

Concept Design of Angular Deviation and Development of Measurement System for Transparency in Aircraft (항공기 투명체의 편각개념 설계 및 측정 시스템 개발)

  • Moon, Tae-Sang;Woo, Seong-Jo;Kwon, Seong-Il;Ryu, Kwang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1123-1129
    • /
    • 2010
  • Angular Deviation(AD) on transparency applied to TA-50 Aircraft deteriorates armament system's accuracy because it makes a difference in between actual and theoretical targets. In order to increase accuracy, therefore, TA-50 Aircraft measures AD on transparency and provide the measured values for the integrated mission display computer as a type of AD coefficients. This makes AD revised so that pilots can accurately see the actual target on their head-up display. In order to implement such mechanism into a real field, we develop a new device and system automatically measuring AD for the first time. We also deal with basic concept including AD induction formula as well as operating systems. As a consequence of testing the accuracy and precision for verifying reliability of the system, we got satisfactory results. In specific, the accuracy was within the resultant criterion of 1%. The precision was also satisfied with respect to the whole criteria. The system developed through this research is qualified as a military standard equipment for transparency of the canopy.

A Study on the Effective Command of Disaster Site: Lessons Learned from Sinking of the Sewol Ferry (효과적인 재난현장 지휘에 관한 연구: 세월호 사례의 교훈)

  • Kim, SungGeun;Hwang, K.T.
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.1-12
    • /
    • 2014
  • Today, scale of a disaster becomes huge, all the available resources should be mobilized to control the disaster situation, and situations of the disaster site is broadcasted by the various media on a real-time basis. Accordingly, The commander of the disaster site should manage the situation taking all the factors into consideration. Despite the importance of the factors affecting the command of disaster site, there are not much research on this topic. This study utilizes METT-TC(Mission, Enemy, Troops, Terrain and weather, Time available, and Civilian considerations) which is applied in a combat situation by the military area and proposes MORT-TEC(Mission, Object, Resources available, Terrain and weather, Time available, Exercise, and Civilian considerations) as factors affecting the effective command of disaster site. These factors are applied to the Sewol Ferry Incidents and policy implications which can help researchers and practitioners in the area are suggested.

Application of Safety Analysis and Management in Software Development Process (소프트웨어 개발 프로세스에서의 안전성 분석 및 관리 활동의 적용방안)

  • Kim, Soon-Kyeom;Hong, Jang-Eui
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • As most devices in a wide range of automotive, aerospace, and missile have built-in software that controls the system behaviors, the safety of the software is growing in its importance. That is, the software safety has emerged as one of big issues because the threat of accidents caused by software malfunction is rising. Accident by software can be occurred from user mal-operation, but the fundamental reason of the accident comes from insufficient verification of the safety in software development process. Therefore, this paper presents how the software safety analysis and management activities should be done in the development process. In particular, we propose how to apply the safety analysis and management activities in the prototype or incremental development process.