• Title/Summary/Keyword: 구조방정식기법

Search Result 382, Processing Time 0.024 seconds

Inundation of Tsunamis Based on Quadtree Grid System (사면구조 격자에 의한 지진해일의 범람영역)

  • Lin, Tae-Hoon;Park, Koo-Yong;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.71-76
    • /
    • 2004
  • To investigate the inundation of tsunamis in the vicinity of a circular island, a numerical model has been developed based on quadtree grids. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. The quadtree grids are generated around a circular island where refined with rectangular or circular domain. Obtained numerical results have been verified by comparing to available laboratory measurements of run-up heights. A good agreement has been achieved.

Numerical Simulation of Flood Inundation with Quadtree Grid (사면구조 격자를 이용한 홍수범람 모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.45-52
    • /
    • 2007
  • In this study, the flood inundations of the Nam River catchment running through the Uiryeong and Haman regions have been simulated using the numerical model based on quadtree grids. The nonlinear Saint Venant equation is employed as the governing equation for a numerical model in this study. The governing equations are discretized explicitly with a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. Results from this study are compared with those of established numerical models such as the HEC-RAS and the FLUMEN. A numerical model is also simulated according to the frequency variations of flood event. Obtained numerical results show good agreements with them of commercial models. It is found from this study that the flood inundations in the studied area can be occurred at a 500 year frequency event.

2-D Dynamic analysis method of base-isolated pool structure (면진수조의 2차원 동적 해석기법 개발)

  • 전영선;최인걸;김진웅
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.67-74
    • /
    • 1995
  • This study develops 2-D analysis method of a base-isolated pool structure, and verifies the method through shaking table test using a scaled model. A wall of the pool structure is modeled as lumped mass, and added mass of the fluid is imposed on the nodes of the structure to consider the hydrodynamic effect of contained fluid. The equation of motion of base-isolated pool structure is obtained by coupling of two equations for superstructure composed of wall and fluid, and for bottom slab and isolator. The scaled model for shaking table test is made with transparent acryle, and 4-high damping laminated rubber bearings are used. The responses of the scaled model by the test are generally good agreement with those by the analysis. It is shown that 2-D analysis method gives somewhat conservative results.

  • PDF

Run-up heights of nearshore tsunami based on quadtree grids (Quadtree격자를 이용한 근해지진해일의 처오름높이 계산)

  • Lin, Tae-Hoon;Park, Koo-Yong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.705-713
    • /
    • 2003
  • To investigate the run-up heights of nearshore tsunamis in the vicinity of a circular island, a numerical model has been developed based on quadtree grids. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using a finite difference leap-frog scheme on adaptive hierarchical quadtree grids. The quadtree grids are generated around a circular island where refined with rectangular or circular domain. Obtained numerical results have been verified by comparing to available laboratory measurements. A good agreement has been achieved.

Development of Out-of-Core Equation Solver with Virtual Memory Database for Large-Scale Structural Analysis (가상 메모리 데이타베이스를 이용한 대규모 구조해석용 코어 외 방정식 해석기법의 개발)

  • 이성우;송윤환;이동근
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-110
    • /
    • 1991
  • To solve the large problems with limited core memory of computer, a disk management scheme called virtual memory database has been developed. Utilizing this technique along with memory moving scheme, an efficient in-and out-of-core column solver for the sparse symmetric matrix commonly arising in the finite element analysis is developed. Compared with other methods the algorithm is simple, therefore the coding and computational efficiencies are greatly enhanced. Analysis example shows that the proposed method efficiently solve the large structural problem on the small-memory micro-computer.

  • PDF

Failure Analysis of RC Cylindrical Structures using Layered Shell Element with a Pressure Node (압력절점을 갖는 적층쉘 요소에 의한 콘크리트 원통형 구조물의 파괴해석)

  • 송하원;방정용;변근주;최강룡
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.475-484
    • /
    • 1999
  • 압력절점은 요소의 균등한 압력증분을 1개의 자유도로 갖는 절점이며, 유한요소의 하중-변위 평형방정식에 체적과 압력의 관계를 추가하여 한계압력 이후에서도 체적변화에 따른 압력증분을 직접적으로 제저할 수 있는 절점이다. 본 연구에서는 철근콘크리트의 평면 구성 방정식과 적층정식화에 적용한 쉘 요소에 압력절점을 추가하고 해석시 체적을 제어함으로써 철근콘크리트 원통형 구조에 대해 파괴까지의 극한내압 능력을 해석할 수 있는 체적제어 비선형 해석기법을 개발하였다. 본 논문에서 제안한 해석기법을 이용하여 철근콘크리트 원통형 구조물에 대하여 비선형 해석을 수행하여 한계압력과 한계압력 이후의 구조물의 거동을 예측하였으며 실험결과와 비교 검증하였다.

  • PDF

Seismic Response Prediction Method of Cabinet Structures in a Nuclear Power Plant Using Vibration Tests (진동시험을 이용한 원자력발전소 캐비닛 구조의 지진응답예측기법)

  • Koo, Ki-Young;Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.57-63
    • /
    • 2008
  • This paper presents a seismic response prediction method using vibration tests of cabinet-type electrical equipment installed in a nuclear power plant. The proposed method consists of three steps: 1) identification of earthquake-equivalent forces based on lumped-mass system idealization, 2) identification of a state-space-equation model relating input-output measurements obtained from the vibration tests, 3) seismic prediction using the identified earthquake-equivalent forces and the identified state-space-equation. The proposed method is advantageous compared to other methods based on FEM (finite element method) model update, since the proposed method is not influenced by FEM modeling errors. Through a series of numerical verifications on a frame model and 3-dimensional shell model, it was found that the proposed method could be used to accurately predict the seismic responses, even under considerable measurement noise conditions. Experimental validation is needed for further study.

Out of Plane Free Vibrations of Circular Curved Beams (원호형 곡선보의 면외 자유진동에 관한 수치해석적 연구)

  • 이병구;오상진
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.133-139
    • /
    • 1996
  • In this paper, an approximate method is developed to obtain the natural frequencies of the out of plane vibration of circular curved beams. The governing differential equations are derived using the dynamic equilibrium equations with the Timoshenko theory, and solved numerically. The Runge-Kutta method and Regula-Falsi method are used to integrate the differential equations and to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged and clamped-clamped end constraints are considered. For each case, the four lowest natural frequencies are reported as functions of four non-dimensional system parameters.

  • PDF

Numerical Solution of the Mild Slope Equation by Conjugate Gradient Method (CGM을 이용한 완경사방정식의 수치해석)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.84-90
    • /
    • 1993
  • Iterative solution procedure (Conjugate Gradient Method, Panchang et al., 1991) is implemented for solving the complete mild slope equation for the spherical shoal and the coast with detached breakwater. The numerical results agreed well with the experimental data. The disadvantage that mild slope eguation could be solved only for small domains is now overcome by using this solution procedure. Moreover it can be easily applied to the coastal regions with complex geometry and structures, and needs not so much computer time as the conventional models.

  • PDF

비압축성 점성유체의 유한요소 해석

  • 유원진
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.90-95
    • /
    • 1998
  • 본 고에서는 비압축성 점성유체의 유한요소해석 기법을 소개하였다. 대류항의 상류화 기법으로 안정된 해를 도출할 수 있으며 Penalty 방법에 기반하여 압력항을 지배방정식으로부터 소거함으로써 해석시간과 요구저장공간을 감소시켰다. 실린더 주변의 유동장을 해석하여 와의 방출을 성공적으로 묘사하였으며 항력계수를 17%정도의 오차로 계산하였다. 적응적 요소세분화 기법에 대한 연구를 통해 적절한 오차평가 기법 및 최적의 체눈을 형성하는 기법을 제시하였다. 또한 동적 해석에 적합한 요소재결합 알고리즘에 대한 연구가 진행중이다. 본 고의 결과는 직접적으로 풍공학분야에 사용하기에는 아직 계산 시간의 효율성이나 해의 정확도 및 안정성면에서 무리가 있으나 추가적인 연구를 통하여 해석기법의 개선을 도모하고 컴퓨터 등 계산장비의 급속한 발전으로 장래에 경쟁력을 획득할 수 있을 것으로 기대된다.

  • PDF