• Title/Summary/Keyword: 광물함량

Search Result 869, Processing Time 0.024 seconds

Characteristics of Uraniferous Minerals in Daebo Granite and Significance of Mineral Species (대보화강암내 함우라늄 광물의 산출특징과 존재형태의 중요성)

  • 추창오
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2002
  • A mineralogical study was made in order to identify the relationship between uranium content in groundwater and rock chemistry using core rocks recovered from the drilling holes for wells in the Daebo Granite areas. Uraniferous minerals are of primary origin and occur as inclusions in accessory minerals such as zircon, monazite, and xenotime. Since the uraniferous minerals are very small to be 1 ~ 2 $\mu$m in size, it is difficult to distinguish their mineralogical species precisely. The frequent presence of dissolution cavities or dissolved textures in the accessory minerals suggests that uraniferous minerals dissolved partially and contributed to the groundwater chemistry. Because there is no clear relationship between host rocks and groundwater for uranium concentration, mineralogical characteristics of uraniferous minerals, together with aqueous geochemical conditions favorable for uranium dissolution, could play important roles in groundwaster chemistry.

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

Nickel and cobalt partition coefficients in pyrite-pyrrhotite as geothermometer. (지질온도계로써 황철석과 자류철석내의 Ni와 Co의 분배 계수)

  • Yoo, Jae-Shin
    • Journal of the Speleological Society of Korea
    • /
    • v.24 no.25
    • /
    • pp.69-80
    • /
    • 1991
  • 광화시기가 같은 유화광물중에서 상접하는 황철석과 자류철석 내에 함유되어 있는 코발트와 니켈의 함량을 정량분석하여 이들 원소들의 Partition Coefficients로부터 Bezmen method를 이용하여 광물의 생성온도를 구하였다(217~395$^{\circ}$). 지질 연대가 같은 유화광물의 생성온도는 동시기에 생성된 인접한 석영내의 유체포유물의 filling temperature와 거의 일치한다(255~395$^{\circ}$). 따라서 이들 광산내의 광물의 생성온도는 지질온도계로 사용이 가능하며 광물의 생성환경을 규명하는데도 유용할 것이다.

  • PDF

Surface Sediments of the Continental Shelf and Slope off the Southeastern Coast of Korea (한국 동남해역 대륙붕과 대륙사면 표면퇴적물의 분포와 특성)

  • Lee, Chang-Bok;Park, Yong Ahn;Choi, Jin-Yong;Kim, Gi-Beom
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 1989
  • A total of 139 surface sediment samples, collected from the continental shelf and slope off the southeastern coast of Korea, were analyzed in order to understand their grain-size, mineral composition and organic carbon content. Based on the grain-size characteristics, five surface sedimentary facies were distinguished: sand, clay, mud, sand-mud mixed, and sand-clay mixed facies. The sand facies appears to be composed mostly of relict sand. For mud, most of which seem to be of recent origin, two different sources were suggested, based principally on their areal distribution pattern and the local hydrographic conditions. Heavy mineral composition of the fine-sand size fraction allowed us to distinguish different sand populations from the study area. On the whole, the Hupo Bank sediments showed a high content of garnet, while the sediments from the northern part of the continental shelf were characterized by a relatively high content of metamorphic minerals (kyanite, sillimanite, andalusite, staurolite). Among clay minerals, the most abundant was illite, with chlorite, kaolinite and smectite following in decreasing order. Organic carbon contents in the sediments of the study area were generally high and showed an average value of 1.94%. The sediment grain-size exerted a strong influence on the organic carbon content. The highest organic carbon content, on the other hand, was found in the continental slope sediments.

  • PDF

Clay Mineralogy of the Gangneung-Donghae Coastal Sediments (강릉-동해 연안 퇴적물의 점토광물에 관한 연구)

  • Koo, Hyo Jin;Choi, Hunsoo;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.175-183
    • /
    • 2020
  • There have rarely been performed for the clay mineralogy of the East Sea sediments except for few studies about paleoenvironmental aspect. This study inferred the provenance of sediments based on the clay mineral characteristics and distribution pattern for the 120 sediment samples collected by the box corer from the Gangneung-Donghae area between 2017-2019. The relative proportions of the four major clay minerals are abundant in the order of illite, chlorite, kaolinite, and smectite. The continental shelf sediments below water depth 150 m have more chlorite and kaolinite content and better illite crystallinity, but less illite and smectite content, and S/I index than those of continental slope sediments. Clay mineral composition of the continental shelf sediments are influenced by the adjacent continental geology, because north site (Gangneung area) has more chlorite but south site (Donghae area) has more kaolinite. These characteristics and distribution pattern of clay minerals indicate that the provenance of sediments are different between continental shelf and continental slop. The continental shelf sediments may be introduced the study area by the adjacent small rivers whereas the continental slope sediment might be supplied by current from the south of the study area.

Phase Relation in the System Pt-Sb-Bi at $600^{\circ}C$ and Their Mineralogical Implication ($600^{\circ}C$에서의 백금-안티모니-비스머스계 상평형 관계 및 광물학적 의의)

  • 김원사;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.44-52
    • /
    • 2000
  • 천연에서 발견되는 geversite (PtSb2), stumpflite (PtSb), insizwaite (PtBi2), unnamed PtBi 등의 광물에 대한 안정영역과 원소치환에 따른 고용체 존재를 규명하기 위해 백금-안티모니-비스머스 등 3성분계에 대한 합성실험적 연구를 실시하였다. 이번 연구에서 설정된 $600^{\circ}C$ 온도의 실험결과에 의하면, 등축정계의 geversite와 insizwaite 사이에 완전고용체가 형성되며, Sb를 치환하는 Bi의 함량에 따라 단위포 상수는 6.4415(0 at.%), 6.4361(15 at.%), 6.5204(30 at.%), 6.5411(51 at.%), 6.6261(70 at%), 6.6540(85 at%), 6.728$\AA$(100 at.%)로 증가함을 알 수 있었다. 육방정계인 stumpflite와 unnamed PtBi 사이에도 완전고용체가 형성되며, Sb를 치환하는 Bi의 함량이 증가함에 따라 a 단위포 상수의 크기는 4.1388(0 at.%), 4.2118(20 at.%), 4.2118(40 at.%), 4.2485(80 at.%), 4.3242$\AA$(100 at.%)등 연속적으로 증가하지만, c 단위포 상수는 각각 5.4902, 5.4799, 5.508, 5.4817, 5.5045$\AA$등 불규칙하게 변함을 알 수 있었다. 0~33.33 at.% Pt 영역에서의 상평형 관계는 액체가 Pt(Sb,Bi)2 고용체와 공존하고 있고, Sb가 많이 함유된 액체에서는 geversite+원소광물 안티모니+백금이 거의 함유되지 않은 액체와 공생하는 3-phase assemblage를 형성한다. 자연계에서는 geversite와 insizwaite 및 stumpflite와 unnamed PtBi 사이의 화학조성을 가지는 광물이 발견되고 있는데, 이들은 각각 독립적인 광물종이 아니라 위 광물들의 고용체에 속하는 것임을 알 수 있었다. 이들 광물을 명명하고 해석하는데 매우 세심한 주의가 필요함을 알 수 있었다. 또한 단위포 상수를 측정을 통해 해당 고용체 광물의 Sb↔Bi 치환 양을 추정할 수 있다는 점과 광물 공생관계를 통해 생성온도를 추정할 수 있다는 사실을 알 수 있었다.

  • PDF

The Relationship between the Mineral Characteristics and Spectral Induced Polarization for the Core Rock Samples from the Gagok Skarn Deposit (가곡 스카른 광상의 암석시료에 대한 광물특성과 광대역 유도분극 반응과의 관련성)

  • Heo, Seo-Young;Oh, Ji-Ho;Yang, Kyoung-Hee;Hwang, Jin-Yeon;Park, Sam-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • In order to develop the evaluation techniques for the potential sulfide ore reserves, the relationships between the modal vol.%, grain sizes and textural characteristics of the constituent minerals (e.g., sulfides, oxides and skarn minerals) and the Spectral Induced Polarization (SIP) phase differences are examined for the nine rock cores collected from the Gagok Pb-Zn skarn deposit. The Gagok Pb-Zn skarn deposit occurs mainly along the intrusive contact between the Cretaceous granitic rocks and Cambrian Myobong slate and Pungchon limestone. The nine rock cores have been grouped into three showing distinctive SIP phase differences: the highest (Group I), intermediate (Group II) and lowest (Group III). In relation with the modal vol.% of minerals, Group I is characterized by higher pyrrhotite (25-38 vol.%) and amphibole (40-55 vol.%); Group II by intermediate pyrrhotite (7-13 vol.%) and higher garnet (44-68 vol.%); and lower pyrrhotite (1-7 vol.%) and higher pyroxene (24-66 vol.%) stand for Group III. Furthermore, the grains of all the major constituent minerals become smaller from Group I (<5 mm) through Group II (<2.5 mm) to Group III (<1.6 mm). In particular, the pyrrhotite contents and their grain sizes show logarithmic correlation with the SIP phase differences, Although we present here the results solely from nine samples, the systematic interrelations especially for pyrrhotite indicate the potential ability of SIP measurements as a new mine-evaluation technique for the sulfide ore reservoir.

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia (몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성)

  • Badrakh, Munkhsuren;Yu, Jaehyung;Jeong, Yongsik;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.