DOI QR코드

DOI QR Code

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia

몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성

  • Badrakh, Munkhsuren (Department of Geology and Earth Environmental Science, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Science, Chungnam National University) ;
  • Jeong, Yongsik (Department of Geology and Earth Environmental Science, Chungnam National University) ;
  • Lee, Gilljae (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 문크수렌 (충남대학교 지질환경과학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 정용식 (충남대학교 지질환경과학과) ;
  • 이길재 (한국지질자원연구원 광물자원연구본부 광물자원연구)
  • Received : 2015.03.09
  • Accepted : 2015.06.05
  • Published : 2015.06.30

Abstract

This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.

본 연구는 몽골 돈디고비(Dundgobi)지역에서 채취한 오일셰일과 석탄 시료들의 유기물 기원, 광물조성 및 분광학적 특징에 대해 조사하였다. 채취한 오일셰일 및 석탄시료들은 Rock/Eval과 총유기탄소(Total organic carbon; TOC) 분석을 통해 케로젠(Kerogen) 종류, 수소 함량, 열적 성숙도, 퇴적 환경을 확인하였으며, X-선회절 분석과 분광분석을 이용하여 광물조성을 정의하였다. Rock/Eval과 TOC 분석결과, 에뎀트(Eedemt) 광상에서 채취한 샘플들은 미성숙-성숙 단계의 근원암에 해당하며, 풍부한 수소함량을 보이고, I-형, II-형 and III-형의 케로젠 종류를 가진다. 반면 샤인 어스 쿠닥(Shine Us Khudag) 광상에서 채취한 샘플들의 경우 성숙단계의 근원암으로써, I-형, II/III-형 또는 III-형의 케로젠을 함유하는 잠재성을 가진다. 또한 탄소와 황의 함량에 따르면 두 지점의 퇴적환경은 담수성의 퇴적환경인 것으로 확인되었다. X-선회절 분석으로부터 확인한 오일셰일과 석탄시료들의 광물조성은 석영, 방해석, 고회석, 일라이트, 고령토, 몬모릴로나이트, 아놀소클레이스, 조장석, 미사장석, 정장석, 방비석으로 확인되었다. 가시광선-근적외선-단파적외선 분광분석을 통해 오일셰일 시료로부터 1412 nm, 1907 nm의 점토광물 및 수산화성분에 의한 흡광특성, 2206 nm에서 고령토와 몬모릴로나이트에 의한 흡광특성, 탄산염광물인 고회석에 의한 흡광특성이 2306 nm에서 확인되었다. 그러나 오일셰일의 원격탐사적 탐사를 위해서는 유기물 함량에 따른 분광특성에 대한 연구가 수행되어야 할 것으로 사료된다.

Keywords

References

  1. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009) The ASTER spectral library version 2.0: Remote Sensing of Environment, 113, 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  2. Bat-Erdene, D. (2009) Geology and Mineral resource of Mongolia. "Fuel resources". Soyombo, Ulaanbaatar, 181-183(in Mongolian).
  3. Berner, R.A., and Raiswell, R. (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12, 365-368. https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  4. Bordenave, M.L., Espotalie, J., Leplat, P., Oudin, J.L., and Vandenbroucke, M. (1993) Screening techniques for source rock evalution. Applied Petroleum Geochemistry, 217-278.
  5. Bumburuu, G., Lkhundev, Sh., Baatar, Ts., Byamba, B., Baatar, D., Tundev, S., Bukhbat, S., Sergelen, S., Tuuruul, N., Tungalag, P., Amarsaikhan, Ts., and Batmunkh, Ch. (1990) Geological map of Mongolia, Sainshand sheet L-48-XXX (1:200,000). Ministry of Energy, Mining Industry and Geology of Mongolia.
  6. Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J. (2007) USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231.
  7. Hauff, P. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied precious metals exploration. Arvada, Colorado; Spectral Inc., 80001 303 403 8383.
  8. Kerr, A., Rafuse, H., Sparkes, G., Hinchey, J., and Sandeman, H. (2011) Visible/infrared spectroscopy (VIRS) as a research tool in economic geology: background and pilot studies from Newfoundland and Labrador. Geological Survey, Report 11-1, 145-166.
  9. McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K., Stankiewicz, A. (2011) Basic Petroleum Geochemistry for Source Rock Evaluation. Oilfield Review Summer, 23, no.2.
  10. Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologist Bulletin, 70, 318-389.
  11. Peters, K.E., and Cassa, M.R. (1994) Applied source rock geochemistry. In Magoon, L.B., and Dow, W.G., (eds.), The petroleum system-from source to trap. American Association of Petroleum Geologists, 60, 93-120.
  12. Pontual, S., Gamson, P., and Merry, N. (2012) Spectral interpretation field manual. Spectral Analysis Guides for Mineral Exploration, G-Mex Version 3.0.Ausspec International Pty. Ltd. Vol.1.
  13. Savel, V.V., Pevneva, G.S., Namkhainorov, Zh., and Golovko, A.K. (2001) Oil Shales of Mongolia. Solid fuel chemistry, 45, No.6, 397-403. https://doi.org/10.3103/S0361521911060127
  14. Speight, J.G. (2012) Shale oil production processes. (1stEd.), Gulf Publishing Company, Kidlington, Oxford, 58p.
  15. Varzalov, Yu.K., and Khayankhyarvaa. (1949) Geological map of Mongolia, Choir sheet L-48-XXIX (1:200,000). Ministry of Energy, Industry and Geology of Mongolia.
  16. Yamamoto, M., Bat-Erdene, D., Ulziikhishig, P., Enomoto, M., Kajiwara, Y., and Nakajima, T. (1993) Preliminary report on geochemistry of Lower Cretaceous Dsunbayan oil shales, eastern Mongolia. Bulletin of the Geological Survey of Japan, 44, 685-691.
  17. Yamamoto, M., Bat-Erdene, D., Ulziikhishig, P., Watanabe, Y., Imai, N., Kajiwara, Y., Takeda, N., and Nakajima, T. (1998) Organic geochemistry and palynology of Lower Cretaceous Zunnbayan oil shales, Mongolia. Bulletin of the Geological Survey of Japan, 49, 257-274.