DOI QR코드

DOI QR Code

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period

마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화

  • Kim, Sung-Han (Division of Earth Environmental System, Pusan National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences, Gyeongsang National University) ;
  • Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University)
  • 김성한 (부산대학교 지구환경시스템학부) ;
  • 조현구 (경상대학교 지구환경과학과) ;
  • 김부근 (부산대학교 지구환경시스템학부)
  • Received : 2011.01.19
  • Accepted : 2011.03.23
  • Published : 2011.03.31

Abstract

Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

베링해 알류샨 분지의 북부 사면지역에서 채취된 피스톤 코아 PC25A의 퇴적물에서 점토광물의 반정량적 함량 분석을 통해 지난 마지막 빙하기 동안 퇴적물의 기원지와 운송 경로의 변화를 살펴보았다. 코아 PC25A의 연대는 방산충 L. nipponica sakaii의 마지막 출현 시기($48.6{\pm}2\; ka$)와 인근 지역에서 채취한 연대가 잘 정립된 코아 PC23A의 퇴적물 색도($a^{\ast},\; b^{\ast}$) 및 퇴적 엽리층의 대비를 통해 설정되었다. 코아 PC25A의 최하단부가 약 57,600년 전으로 계산되었고, 코아 상부는 손실된 것으로 판단된다. 지난 마지막 빙하기 동안 스멕타이트, 일라이트, 캐올리나이트, 녹니석의 평균 함량은 각각 11% (5~24%), 47% (36~58%), 13% (9~19%), 29% (21~40%)이다. 코아 PC25A의 인근 지역에서 채취한 코아 MC24에서 분석된 홀로세의 점토광물 함량에 비하여 마지막 빙하기동안에 특징적으로 일라이트 함량이 증가하였고 스멕타이트 함량은 감소하였다. 따뜻한 기후의 홀로세 전기(Early Holocene) 동안 일라이트 함량이 높은 점토 퇴적물이 알라스카 대륙의 북부 지역(Province 1)으로부터 유입되는 융빙수에 의해 운반된 것으로 판단된다. MIS 2의 후빙기(B${\phi}$lling-All${\phi}$rod)동안에도 융빙수에 의해 점토광물이 운반되었으나, 일라이트 함량이 홀로 세 전기에 비해 낮기 때문에 북쪽의 Province 1보다는 남쪽에 위치한 Province 2와 Province 3에서 점토입자들이 기원된 것으로 해석된다. 마지막 최대 빙하기(Last Glacial Maximum)동안 나타나는 높은 스멕타이트 함량은 베링해 남동쪽 알라스카 반도 인근 지역(Province 4)에서 공급되는 점토 퇴적물의 양이 증가하였기 때문으로 보인다. MIS 3 초기에서 중기로 가면서 일라이트와 스멕타이트 함량이 감소하고, 녹니석의 함량은 증가하였다. MIS 3 동안 해수면이 낮아지면서 Province 2와 Province 3에서 점토 퇴적물의 공급이 증가한 것으로 보인다. 베링해 알류산 분지의 북부 사면지역에서 채취된 코아 PC25A에서 분석된 점토광물 조성의 변화는 마지막 빙하기동안 해수면의 하강으로 인하여 점토광물의 이동과 관련된 베링해의 표층 해류 순환이 현재와는 다른 양상으로 변화되었기 때문이다.

Keywords

References

  1. 김성한, 김부근, 신혜선, Uchida, M., Itaki, T., and Ohkushi, K. (2009) 베링해 중부 지역의 마지막 빙하 기 이후 고생산성의 고해상 변화. 한국해양학회지, 14, 133-144.
  2. Biscaye, P.E. (1964) Distribution between kaolinite and chlorite in recent sediments by x-ray diffraction. Am. Mineral., 49, 1281-1289.
  3. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geol. Soc. Am. Bull., 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Bouquillon, A., France-Lanord, C., Michard, A., and Tiercelin, J.J. (1990) Sedimentology and isotopic chemistry of the Bengal Fan sediments: the denudation of the Himalaya. In: Cocharn, J.R., Stow, D.A.V., et al. (eds.), Proc. ODP: Sci. Results, Ocean Drilling Program Vol. 116, ODP: College Station, TX, 43-58.
  5. Brindley, G.W. (1980) Order-disorder in clay mineral structures. In: Brindley, G.W. and Brown, G. (eds.), Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph, 5, 125-195.
  6. Brunelle, B.G., Sigman, D.M., Cook, M.S., Keigwin, L.D., Haug, G.H., Plessen, B., Schettler, G., and Jaccard, S.L. (2007) Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22, PA1215, doi:10.1029/ 2005PA001205.
  7. Brunton, G.D. (1955) Vapour pressure glycolation of oriented clay minerals. Am. Mineral., 40, 803-832.
  8. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, 623p.
  9. Chamley, H. (1997) Clay mineral sedimentation in the ocean. In: Paquet, G. and Clauer, N. (eds), Soils and sediments, Mineralogy and Geochemistry. Springer, 269-302.
  10. Coachman, L.K., Aagaard, K., and Tripp, R.B. (1975) Bering Strait: The Regional Oceanography. University of Washington Press, Seattle, 172p.
  11. Cook, M.S., Keigwin, L.D., and Sancetta, C.A. (2005) The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res. II, 52, 2163-2173. https://doi.org/10.1016/j.dsr2.2005.07.004
  12. Damiani, D., Giorgetti, G., and Turbanti, I.M. (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene-Quaternary marine sediments from Wilkes Land continental rise (East- Antarctica): Paleoenvironmental significance. Mar. Geol., 226, 281-295. https://doi.org/10.1016/j.margeo.2005.11.002
  13. Deer, W.A., Howie, R.A., and Zussaman, J. (1966) An introduction to the rock forming minerals. Longmans, London, 528p.
  14. Diekmann, B., Kuhn, G., Mackensen, A., Petschick, R., Futterer, D.K., Gersonde, R., Riuhlemann, C., and Niebler, H.S. (1999) Kaolinite and chlorite as tracers of modern and late Quaternary deep water circulation in the South Atlantic and the adjoining Southern Ocean. In: Fischer, G. and Wefer, G. (eds.), Use of Proxies in Paleoceanography: examples from the South Atlanic. Springer-Verlag, Berlin, Heidelberg, 1-29.
  15. Ehrmann, W.U., Melles, M., Kuhn, G., and Grobe, H. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar. Geol., 107, 249-273. https://doi.org/10.1016/0025-3227(92)90075-S
  16. Fairbanks, R.G. (1989) A 17,000-year glacioeustatic sealevel record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642. https://doi.org/10.1038/342637a0
  17. France-Lanord, C., Derry, L., and Michard, A. (1993) Evolution of the Himalaya since Miocene times: isotopic and sedimentological evidence from the Bengal Fan. In: Treloar, P.J. and Searle, M. (eds.), Himalayan Tectonics. Spec. Publ. Geol. Soc. London, 7, 603-621.
  18. Gingele, F.X. (1996) Holocene climatic optimum in Southwest Africa - evidence from the marine clay mineral record. Paleogeogr. Palaeoclimatol. Palaeoecol. 122, 77-87. https://doi.org/10.1016/0031-0182(96)00076-4
  19. Gorbarenko, S.A., Basov, I.A., Chekhovskaya, M.P., Southon, J., Khusid, T.A., and Artemova, A.V. (2005) Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial- Holocene: geochemical and paleontological evidence. Deep-Sea Res. II, 52, 2174-2185. https://doi.org/10.1016/j.dsr2.2005.08.005
  20. Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York, 596p.
  21. Itaki, T., Uchida, M., Kim, S., Shin, H.S., Tada, R., and Khim, B.K. (2009) Late Pleistocene stratigraphy and paleoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. Jour. Quat. Sci., 24, 856-865. https://doi.org/10.1002/jqs.1356
  22. Katsuki, K. and Takahashi, K. (2005) Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2110-2130. https://doi.org/10.1016/j.dsr2.2005.07.001
  23. Keigwin, L.D., Donnelly, J.P., Cook, M.S., Driscoll, N.W., and Brigham-Grette, J. (2006) Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology, 34, 861-864. https://doi.org/10.1130/G22712.1
  24. Khim, B.K. and Park, Y.A. (1992) Smectite as a possible source-indicative clay mineral in the Yellow Sea. Geo-Mar. Lett., 12, 228-231. https://doi.org/10.1007/BF02091843
  25. Morley, J.J., Hays, J.D., and Robertson, J.H. (1982) Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep-Sea Res., 29, 1485-1499. https://doi.org/10.1016/0198-0149(82)90038-3
  26. Naidu, A.S., Creager, J.S., and Mowatt, T.C. (1982) Clay mineral dispersal patterns in the north Bering and Chukchi Seas. Mar. Geol., 47, 1-15. https://doi.org/10.1016/0025-3227(82)90016-0
  27. Naidu, A.S. and Mowatt, T.C. (1983) Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol. Soc. Am. Bull., 94, 841-854. https://doi.org/10.1130/0016-7606(1983)94<841:SADPOC>2.0.CO;2
  28. Niebauer, H.J., Bond, N.A., Yakunin, L.P., and Plotnikov, V.V. (1999) An update on the climatology and sea ice of the Bering Sea. In: Loughlin, T.R. and Ohtani, K. (eds.), Dynamics of the Bering Sea, Univ. Alaska Sea Grant, Fairbanks, 29-59.
  29. Park, Y.A. and Khim, B.K. (1992) Origin and dispersal of the recent clay minerals in the Yellow Sea. Mar. Geol., 104, 205-213. https://doi.org/10.1016/0025-3227(92)90095-Y
  30. Sancetta, C., Heusser, L., Labeyrie, L., Naidu, S.A., and Robinson, S.W. (1985) Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55-68.
  31. Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments - a review. Earth Sci. Rev., 21, 251-293. https://doi.org/10.1016/0012-8252(84)90055-2
  32. Siroko, F. and Lange, H. (1991) Clay accumulation rates in the Arabian Sea during the late Quaternary. Mar. Geol., 97, 105-119. https://doi.org/10.1016/0025-3227(91)90021-U
  33. Stabeno, P.J., Schumacher, J.D., and Ohtani, K. (1999) The physical oceanography of the Bering Sea. In: Loughlin, T.R. and Ohtani, K. (eds.), Dynamics of the Bering Sea, Univ. Alaska Sea Grant, Fairbanks, 1-28.
  34. Stephan, S., Hanebuth, T.J.J., Vogt, C., and Stattegger, K. (2008) Sea level induced variations in clay mineral composition in the southwestern South China over the past 17,000 yr. Mar. Geol., 250, 199-210. https://doi.org/10.1016/j.margeo.2008.01.005
  35. Stokke, P.R. and Carson, B. (1973) Variation in clay mineral X-ray diffraction results with the quantity of sample mounted. Jour. Sediment. Petrol., 43, 957-964.
  36. Thamban, M., Rao, V.P., and Schneider, R.R. (2002) Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Mar. Geol., 186, 527-539. https://doi.org/10.1016/S0025-3227(02)00268-2
  37. Trentesaux, A., Liu, Z., Colin, C., Clemens, S.C., Boulay, S., and Wang, P. (2003) Pleistocene paleoclimatic cyclicity of southern China: clay mineral evidence recorded in the South China Sea (ODP Site 1146). In: Prell, W.L. Wang, P., Blum, P., and Clemens, S., (eds.), Proc. ODP Sci. Res., Vol. 184, 1-10 (online).
  38. Vanderaveroet, P., Averbuch, O., Deconinck, J.F., and Chamley, H. (1999) A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain size and magnetic susceptibility data. Mar. Geol., 159, 79-92. https://doi.org/10.1016/S0025-3227(98)00203-5

Cited by

  1. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea vol.35, pp.6, 2015, https://doi.org/10.1007/s00367-015-0417-3
  2. 남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적 vol.41, pp.4, 2011, https://doi.org/10.4217/opr.2019.41.4.265
  3. Deglacial Land-Ocean Linkages at the Alaskan Continental Margin in the Bering Sea vol.9, pp.None, 2021, https://doi.org/10.3389/feart.2021.712415