• Title/Summary/Keyword: 관측소 정보

Search Result 220, Processing Time 0.021 seconds

Estimation of Daily Sewage and Direct Runoff for the Combined Sewer System of Gunja Experimental Drainage (군자 시험배수구역 합류식 하수관거시스템의 일일하수량 및 직접유출량 산정)

  • Kim, Chung-Soo;Han, Myoung-Sun;Kim, Hyoung-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.191-200
    • /
    • 2009
  • A localized torrential rainfall and flash floods which are more frequently occurred by extraordinary atmospheric phenomena and rising sea surface temperature require more hydrological data collecting and analysis for small watershed. Urban watershed hydrological data monitoring system is needed because of big flood potential damage and lack of urban watershed hydrological data. Therefore, Urban Flood Disaster Management Research Center operates small experimental catchments(Sinnae1, Gunja, and Children's Park) observing and analyzing hydrological data(rainfall, stage, and discharge). In this study, the discharge of combined sewage for Gunja experimental drainage is analyzed with weekly data and day of the week data. Through several analyses in analyzing the urban runoff characteristics and managing the urban sewage system, direct runoff is calibrated and verified by the estimated values of rainfall-runoff model(SWMM).

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

Comparison of Accuracy for GPM IMERG, GSMaP and CMORPH Satellite Precipitation Products over Korea (위성강수 GPM IMERG, GSMaP, CMORPH 정확도 비교)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.208-219
    • /
    • 2020
  • This study aims to determine the applicability of satellite precipitation to the ungauged or inaccessible areas by comparing the accuracy of satellite precipitation. The accuracy assessment showed that the overall spatial distributions of ground-based rainfall and satellite precipitation were similar in all three events. For one-month precipitation with one-hour temporal resolution, the correlations between ground-based precipitation (ASOS) and satellite precipitation were analyzed to be between 0.42 and 0.46. In the evaluation during the period in which precipitation was concentrated, the correlation coefficients for one-hour temporal resolution data were analyzed as 0.55 to 0.66 for IMERG and 0.56 to 0.67 for GSMAP. According to the total rainfall analysis of each rainfall station for the three events, the correlation coefficients of IMERG and GSMaP were relatively better than CMORPH, and the bias of CMORPH data was relatively better than IMERG and GSMaP. However, all the three satellite precipitation were underestimated compared to the ground-based precipitation. In the future, a study will be carried out to estimate precipitation across the Korean Peninsula, including North Korea, reflecting the results from this study.

Development of Soil Erosion Analysis Systems Based on Cloud and HyGIS (클라우드 및 HyGIS기반 토양유실분석 시스템 개발)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.63-76
    • /
    • 2011
  • This study purposes to develop a model to analyze soil loss in estimating prior disaster influence. The model of analyzing soil loss develops the soil loss analysis system on the basis of Internet by introducing cloud computing system, and also develops a standalone type in connection with HyGIS. The soil loss analysis system is developed to draw a distribution chart without requiring a S/W license as well as without preparing basic data such as DEM, soil map and land cover map. Besides, it can help users to draw a soil loss distribution chart by applying various factors like direct rain factors. The tools of Soil Loss Anaysis Model in connection with HyGiS are developed as add-on type of GMMap2009 in GEOMania, and also are developed to draw Soil Loss Hazard Map suggested by OECD. As a result of using both models, they are developed very conveniently to analyze soil loss. Hereafter, these models will be able to be improved continuously through researches to analyze sediment a watershed outlet and to calculate R value using data of many rain stations.

Application of the Developed Pre- and Post-Processing System to Yongdamdam Watershed using PRMS Hydrological Model (수문학적 유역특성자료 자동화 추출 및 분석시스템 적용 (II) -PRMS 모형을 이용한 용담댐 유역을 대상으로-)

  • Kwon, Hyung-Joong;Hwang, Eui-Ho;Lee, Geun-Sang;Yu, Byeong-Hyeok;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2008
  • The objective of this study is to evaluate the applicability of extracted PRMS input parameters by KGIS-Hydrology over Yongdam-Dam watershed. KGIS-Hydrology is a system for automatic extraction and analysis of watershed characteristic data. Input parameters of PRMS were generated from GIS data (DEM, soil, forest type, etc.) using KGIS-Hydrology. Multi-temporal meteorological data from Jangsu station of KMA (Korea Meteorological Administration) were used for all simulation periods. Input parameters of PRMS were optimized using observed runoff data of Yongdam-Dam station (1966-2001) and validated using observed runoff data of Yongdam-Dam station (2002-2006, Yongdam-Dam watershed). The results showed that the simulated flows were much closed to the observed flows of Yongdam-Dam (2002-2006) and Donghyang (2001-2004) station by 0.49~0.83 and 0.57~0.75 model efficiencies, respectively.

  • PDF

A Study on the Risk of Lightning in Special Structures and its Verification Method (특수 구조물의 낙뢰 위험도와 검증 방안에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hei Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.664-668
    • /
    • 2018
  • Free-standing structures that are especially high are more likely to receive brain attacks caused by lightning. Since special structures are generally part of national industrial structures, lightning strikes mostly cause socio-economic damage. Lightning protection facilities are installed to prevent such lightning damage, but in 2015, support cables on West Sea bridges were hit by lightning, causing a lot of economic damage. Accordingly, the design of a lightning protection system shall establish protective measures after analyzing the risk of debris falling onto the structure. In this thesis, lightning strikes are analyzed directly in relation to the modeling system that operates the actual information collection system for lightning strikes, depending on the location of the tall, free-standing structures, and practical lightning hazard information is provided by a meteorological station. In addition, we propose monitoring and applying a probability correction rate to the calculation of the lightning risk based on the number of lightning strikes directly reaching the ground in order to obtain an effective lightning risk assessment.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.597-603
    • /
    • 2006
  • The purpose of this study is to improve the short term rainfall forecast skill using neural network model that can deal with the non-linear behavior between satellite data and ground observation, and minimize the flood damage. To overcome the geographical limitation of Korean peninsula and get the long forecast lead time of 3 to 6 hour, the developed rainfall forecast model took satellite imageries and wide range AWS data. The architecture of neural network model is a multi-layer neural network which consists of one input layer, one hidden layer, and one output layer. Neural network is trained using a momentum back propagation algorithm. Flood was estimated using rainfall forecasts. We developed a dynamic flood inundation model which is associated with 1-dimensional flood routing model. Therefore the model can forecast flood aspect in a protected lowland by levee failure of river. In the case of multiple levee breaks at main stream and tributaries, the developed flood inundation model can estimate flood level in a river and inundation level and area in a protected lowland simultaneously.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea (국내 대수층 유형 분류를 통한 지하수위와 수질의 특성화)

  • Lee, Jae Min;Ko, Kyung-Seok;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • The National Groundwater Monitoring Network (NGMN) in South Korea has been implemented in alluvial/ bedrock aquifers for efficient management of groundwater resources. In this study, aquifer types were reclassified with unconfined and confined aquifers based on water-level fluctuation and water quality characteristics. Principal component analysis (PCA) of water-level data from paired monitoring wells of alluvial/bedrock aquifers results in the principal components of both aquifers showing similar water-level fluctuation pattern. There was no significant difference in the rate of water-level rises responding to precipitations and in the NO3-N concentrations between the alluvial and bedrock aquifers. In contrast, in the results classified with the hydrogeological type, the principal components of water level were different between unconfined and confined conditions. The water-level rises to precipitation events were estimated to be 4.6 (R2=0.8) in the unconfined and 2.1 (R2=0.4) in the confined aquifers, respectively, indicating less impact of precipitation recharge to the confined aquifer. The confined aquifers have the average NO3-N concentration below 3 mg/L, implying the natural background level protected from the sources at surface. In summary, reclassification of aquifers into hydrogeological types clearly shows the differences between unconfined and confined aquifers in the water-level fluctuation pattern and NO3-N concentrations. The hydrogeologic condition of aquifer could improve groundwater resource management by providing critical information on groundwater quantity through recharge estimation and quality for protection from potential contamination sources.