DOI QR코드

DOI QR Code

Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea

국내 대수층 유형 분류를 통한 지하수위와 수질의 특성화

  • Lee, Jae Min (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ko, Kyung-Seok (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Woo, Nam C. (Department of Earth System Sciences, Yonsei University)
  • 이재민 (한국지질자원연구원 지하수연구센터) ;
  • 고경석 (한국지질자원연구원 지하수연구센터) ;
  • 우남칠 (연세대학교 지구시스템과학과)
  • Received : 2020.08.10
  • Accepted : 2020.09.15
  • Published : 2020.10.28

Abstract

The National Groundwater Monitoring Network (NGMN) in South Korea has been implemented in alluvial/ bedrock aquifers for efficient management of groundwater resources. In this study, aquifer types were reclassified with unconfined and confined aquifers based on water-level fluctuation and water quality characteristics. Principal component analysis (PCA) of water-level data from paired monitoring wells of alluvial/bedrock aquifers results in the principal components of both aquifers showing similar water-level fluctuation pattern. There was no significant difference in the rate of water-level rises responding to precipitations and in the NO3-N concentrations between the alluvial and bedrock aquifers. In contrast, in the results classified with the hydrogeological type, the principal components of water level were different between unconfined and confined conditions. The water-level rises to precipitation events were estimated to be 4.6 (R2=0.8) in the unconfined and 2.1 (R2=0.4) in the confined aquifers, respectively, indicating less impact of precipitation recharge to the confined aquifer. The confined aquifers have the average NO3-N concentration below 3 mg/L, implying the natural background level protected from the sources at surface. In summary, reclassification of aquifers into hydrogeological types clearly shows the differences between unconfined and confined aquifers in the water-level fluctuation pattern and NO3-N concentrations. The hydrogeologic condition of aquifer could improve groundwater resource management by providing critical information on groundwater quantity through recharge estimation and quality for protection from potential contamination sources.

국가지하수관측망은 지하수 장해 예방과 지하수자원의 효율적 관리를 위해 유역별로 암반 대수층 또는 충적과 암반 대수층 모두에 설치·운영되고 있다. 본 연구에서는 수리지질학적 유형인 자유면과 피압 대수층으로 재분류하여 국내 지하수의 수위와 수질 특성을 재평가하고, 모니터링 자료의 활용방안을 모색하고자 하였다. 충적-암반 쌍으로 구성된 관측소에서 산출된 지하수위 관측자료의 주성분 분석(PCA) 결과, 충적-암반 대수층의 수위변동 주성분은 유사한 변동 패턴을 보였다. 강수량에 따른 수위 상승율과 질산성질소 농도에서도 유의미한 차이가 없었다. 반면, 수리지질학적 유형으로 분류한 경우, 자유면 대수층과 피압 대수층의 지하수위 변동 주성분이 서로 다른 특성을 보였다. 강수에 대한 지하수위 반응에서도 차이가 나타났는데, 수위 상승률은 자유면 대수층과 피압 대수층에서 각각 4.6 (R2=0.8)과 2.1 (R2=0.4)로 산정되어 피압 대수층에서는 강수 함양의 영향을 덜 받는 것으로 판단된다. 피압 대수층으로 분류된 관정들에서는 질산성질소 평균 농도가 3 mg/L 이하로, 인위적 오염의 영향을 거의 받지 않은 자연배경농도로 판단된다. 결과적으로, 국가지하수관측망의 대수층을 수리지질학적 유형으로 재분류했을 때, 수위변동 패턴과 질산성 질소 농도 분포에서 유형별 차이가 구분되어 대수층 유형 분류의 타당성을 검증할 수 있었다. 이러한 대수층의 수리지질학적 상태는 함양량 평가에 따른 지하수자원의 양적 관리와 잠재오염원으로부터의 수질 관리에 필요한 핵심정보를 제공함으로 지하수자원 관리에 기여할 수 있다.

Keywords

References

  1. Atkinson, A.P., Cartwright, I., Gilfedder, B.S., Cendon, D.I., Unland, N.P. and Hofmann, H. (2014) Using $^{14}C$ and $^{3}H$ to understand groundwater flow and recharge in an aquifer window. Hydrol. Earth Syst. Sci., v.18, p.4951-4964. https://doi.org/10.5194/hess-18-4951-2014
  2. Byun, J.Y., Kim, Y.S. and Koo, M.H. (2004) Geochemical Characteristics of Alluvial and Bedrock Groundwater in National Monitoring Wells. Report of Science Education, v.35, p.253-270.
  3. Bredehoeft, J.D. (1967) Response of well-aquifer systems to earth tides. J. Geophys. Res., v.72(12), p.3075-3087. https://doi.org/10.1029/JZ072i012p03075
  4. Choi, B.-Y., Yun, S.-T., Kim, K.-H., Kim, J.-W., Kim, H.M. and Koh, Y.-K. (2014) Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps. J. Geochem. Explor., v.137, p.73-84. https://doi.org/10.1016/j.gexplo.2013.12.001
  5. Chung, I.-M., Kim, N.W. and Lee, J. (2007) Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed. J. Soil Groundw. Environ., v.12(5), p.19-32.
  6. Dragon, K. (2013) Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ. Earth Sci., v.68(7), p.2099-2109. https://doi.org/10.1007/s12665-012-1895-5
  7. Fetter, C.W. (2000) Applied Hydrogeology (4th Ed). Prentice Hall.
  8. Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice Hall, Upper Saddle River, NJ, USA.
  9. Jeong, J., Park, E., Han, W.S., Kim, K.-Y., Oh, J., Ha, K., Yoon, H. and Yun, S.-T. (2017) A method of estimating sequential average unsaturated zone travel times from precipitation and water table level time series data. J. Hydrol., v.554, p.570-581. https://doi.org/10.1016/j.jhydrol.2017.09.042
  10. Jeong, J., Park, E., Han, W.S., Kim, K.-Y., Suk, H. and Jo, S.B. (2018) A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers. J. Hydrol., v.562, p.749-757. https://doi.org/10.1016/j.jhydrol.2018.05.055
  11. Kim, G. (2010) Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites. J. Korea Geo-Environ. Soc., v.11(6), p.57-67. https://doi.org/10.18284/jss.2010.06.29.1.57
  12. Kim, G., Choi, M., Lee, C., Shin, S. and Kim, H. (2018) Characteristics of spatio-temporal distribution of groundwater level's change after 2016 Gyeongju earthquake. JGSK. v.54(1), p.93-105. https://doi.org/10.14770/jgsk.2018.54.1.93
  13. Kim, G.-B. and Yum, B.-W. (2007) Classification and Characterization for Water Level Time Series of Shallow wells at the National Groundwater Monitoring Stations. J. Soil Groundw. Environ., v.12(5), p.86-97.
  14. Kim, G.-B., Yun, H.-H. and Kim, D.-H. (2006) Relationship Between Standardized Precipitation Index and Groundwater Levels: A Proposal for Establishment of Drought Index Wells. J. Soil Groundw. Environ., v.11(3), p.31-42.
  15. Kim, J.W. (2013) Characteristics of water level change and hydrogeochemistry of groundwater from national groundwater monitoring network, Korea: geostatistical interpretation and the implications for groundwater management. Ph.D. thesis in Korea University, 173p.
  16. Kim, K.-H., Yun, S.-T., Kim, H.-K. and Kim, J.-W. (2015) Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using modelbased statistical approaches. J. Geochem. Explor., v.148, p.196-205. https://doi.org/10.1016/j.gexplo.2014.10.001
  17. Lee, B., Hamm, S.Y., Cheong, J.Y. and Kim, G.B. (2014) Relationship between groundwater and climate change in South Korea. Geosci. J., 18, 209-218. https://doi.org/10.1007/s12303-013-0062-7
  18. Lee, H.A., Hamm, S.-Y. and Woo, N.C. (2018a) The Abnormal Groundwater Changes as Potential Precursors of 2016 ML 5.8 Gyeongju Earthquake in Korea. Econ. Environ. Geol., v.51(4), p.393-400. https://doi.org/10.9719/EEG.2018.51.4.393
  19. Lee, J.M., Woo, N.C., Lee, C.-J. and Yoo, K. (2017) Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data. Water, 9, 420. https://doi.org/10.3390/w9060420
  20. Lee, J.M., Park, J.H., Chung, E. and Woo, N.C. (2018b) Assessment of Groundwater Drought in the Mangyeong River Basin, Korea. Sustainability, 10, 831. https://doi.org/10.3390/su10030831
  21. Lee, J.M., Woo, N.C., Koh, D.-C., Kim, K.-Y. and Ko, K.-S. (2020a) Assessing aquifer responses to earthquakes using temporal variations in groundwater level in alluvial and sedimentary bedrock aquifers. Geomat. Nat. Hazards Risk, v.11, p.742-765. https://doi.org/10.1080/19475705.2020.1751310
  22. Liu, C.-T., Chia, Y., Chuang, P.-Y., Chiu, Y.-C. and Tseng, T.-L. (2018) Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeol. J., v.26, p.451-465. https://doi.org/10.1007/s10040-017-1684-z
  23. Madison, R.J. and Brunett, J.O. (1985) Overview of the occurrences of nitrate in groundwater of the United States. In: National water summary 1984: Hydrologic events, selected water-quality trends, and groundwater resources. U.S. Geological Survey Water Supply Paper 2275, p.93-105.
  24. MacLeod, C.L., Barringer, T.H., Vowinkel, E.F. and Price, C.V. (1995) Relation of Nitrate Concentrations in Ground Water to Well Depth, Well Use, and Land Use in Franklin Township, Gloucester Country, New Jersey, 1970-85. U.S. Geological Survey, West Trenton, NJ, USA.
  25. Marechal, J.C., Dewandel, B., Ahmed, S., Galeazzi, L. and Zaidi, F.K. (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J. Hydrol., v.329, p.281-293. https://doi.org/10.1016/j.jhydrol.2006.02.022
  26. ME (Ministry of Environment) and K-water (2019) National Groundwater Monitoring Network in Korea Annual Report 2019. ME and K-water, Daejeon, Korea, 829p.
  27. Melchoir, P. (1964) Earth tides. In Research in Geophysics, vol.2, ed. H. Odishaw, 183-193. Cambridge, Massachusetts: Massachusetts Institute of Technology Press.
  28. MLTM (Ministry of Land, Transport and Maritime Affairs) and K-water (2011) National Groundwater Monitoring Network in Korea Annual Report 2011. MLTM and K-water, Deajeon, Korea, 650p.
  29. MOLIT (Ministry of Land, Infrastructure and Transport) and K-water (2017) National Groundwater Monitoring Network in Korea Annual Report 2017. MOLIT and K-water, Daejeon, Korea, 792p.
  30. MOLIT (Ministry of Land, Infrastructure and Transport) (2017) Report on the national basic groundwater management plan (2017-2026).
  31. Moon, S.K., Woo, N.C. and Lee, K.S. (2004) Statistical analysis of hydrographs and watertable fluctuation to estimate groundwater recharge. J. Hydrol., v.292, p.198-209. https://doi.org/10.1016/j.jhydrol.2003.12.030
  32. Nimmo, J.R., Horowitz, C. and Mitchell, L. (2015) Discretestorm water-table fluctuation method to estimate episodic recharge. Groundwater, v.53, p.282-292. https://doi.org/10.1111/gwat.12177
  33. Zhang, J., Wang, W., Wang, X., Yin, L., Zhu, L., Sun, F., Dong, J., Xie, Y., Robinson, N.I. and Love, A.J. (2019) Seasonal variation in the precipitation recharge coecient for the Ordos Plateau, Northwest China. Hydrogeol. J., v.27, p.801-813. https://doi.org/10.1007/s10040-018-1891-2
  34. Labrecque, G., Chesnaux, R. and Boucher, M.A. (2020) Water-table fluctuation method for assessing aquifer recharge: Application to Canadian aquifers and comparison with other methods. Hydrogeol. J., v.28, p.521-533. https://doi.org/10.1007/s10040-019-02073-1
  35. Park, E. and Parker, J.C. (2008) A simple model for water table fluctuations in response to precipitation. J. Hydrol., v.356, p.344-349. https://doi.org/10.1016/j.jhydrol.2008.04.022
  36. Park, Y.-C., Jo, Y.-J. and Lee, J.-Y. (2011) Trends of groundwater data from the Korean National Groundwater Monitoring Stations: indication of any change? Geosci. J., v.15, p.105-114. https://doi.org/10.1007/s12303-011-0006-z
  37. Rahi, K.A. and Halihan, T. (2013) Identifying Aquifer Type in Fractured Rock Aquifers using Harmonic Analysis. Groundwater, v.51, p.76-82. https://doi.org/10.1111/j.1745-6584.2012.00925.x
  38. Shi, Z., Wang, G., Manga, M. and Wang, C.-Y. (2015) Continental-scale water-level response to a large earthquake. Geofluids, v.15, p.310-320. https://doi.org/10.1111/gfl.12099
  39. Su, G.W., Jasperse, J., Seymour, D., Constantz, J. and Zhou, Q. (2007) Analysis of pumping-induced unsaturated regions beneath a perennial river. Water Resour. Res., v.42, W08421. doi.org/10.1029/2006WR005389.
  40. Thosmas, B.F., Behrangi, A. and Famiglietti, J.S. (2016) Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water, 8, 90; doi:10.3390/w8030090.
  41. U.S. Environmental Protection Agency (US EPA) (2008) EPA's 2008 Report on the Environment. National Center for Environmental Assessment, Washington, DC, USA; EPA/600/R-07/045F.
  42. Yan, R., Wang, G., Ma, Y., Shi, Z. and Song, J. (2020) Local groundwater and tidal changes induced by large earthquakes in the Taiyuan Basin, North China from well monitoring. J. Hydrol., v.582, 124479. https://doi.org/10.1016/j.jhydrol.2019.124479
  43. Singleton, M.J., Esser, B.K., Moran, J.E., Hudson, G.B., McNab, W.W. and Harter, T. (2007) Saturated Zone Denitrification: Potential for Natural Attenuation of nitrate Contamination in Shallow Groundwater Under Dairy Operations. Environ. Sci. Technol., v.41(3), 759-765. https://doi.org/10.1021/es061253g