DOI QR코드

DOI QR Code

Comparison of Accuracy for GPM IMERG, GSMaP and CMORPH Satellite Precipitation Products over Korea

위성강수 GPM IMERG, GSMaP, CMORPH 정확도 비교

  • KIM, Joo-Hun (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • CHOI, Yun-Seok (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • KIM, Kyung-Tak (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 김주훈 (한국건설기술연구원 국토보전연구본부) ;
  • 최윤석 (한국건설기술연구원 국토보전연구본부) ;
  • 김경탁 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.06.08
  • Accepted : 2020.09.07
  • Published : 2020.09.30

Abstract

This study aims to determine the applicability of satellite precipitation to the ungauged or inaccessible areas by comparing the accuracy of satellite precipitation. The accuracy assessment showed that the overall spatial distributions of ground-based rainfall and satellite precipitation were similar in all three events. For one-month precipitation with one-hour temporal resolution, the correlations between ground-based precipitation (ASOS) and satellite precipitation were analyzed to be between 0.42 and 0.46. In the evaluation during the period in which precipitation was concentrated, the correlation coefficients for one-hour temporal resolution data were analyzed as 0.55 to 0.66 for IMERG and 0.56 to 0.67 for GSMAP. According to the total rainfall analysis of each rainfall station for the three events, the correlation coefficients of IMERG and GSMaP were relatively better than CMORPH, and the bias of CMORPH data was relatively better than IMERG and GSMaP. However, all the three satellite precipitation were underestimated compared to the ground-based precipitation. In the future, a study will be carried out to estimate precipitation across the Korean Peninsula, including North Korea, reflecting the results from this study.

본 연구는 위성강수에 대한 정확도를 비교함으로써 미계측 혹은 비접근 지역에 대한 적용성을 판단하는 것을 목적으로 하고 있다. 정확도 평가 결과 전체적인 강수의 공간분포는 세 개의 이벤트 모두 지상계측강우와 위성강수가 유사한 것으로 분석되었다. 1개월간의 강수의 경우 지상계측강수(ASOS)와 위성강수의 1시간의 시간해상도에서 상관계수는 0.42~0.46정도로 분석되었다. 강수가 집중된 기간에 대한 평가에서 1시간의 시간해상도에 대한 상관계수가 IMERG는 0.55~0.66, GSMaP는 0.56~0.67로 분석되었다. 세 개의 이벤트에 대한 관측소별 총강우의 분석결과 상관계수는 IMERG와 GSMaP이 CMORPH 보다 상대적으로 우수한 것으로 분석되었고, 바이어스는 상대적으로 CMORPH가 우수한 것으로 분석되었다. 그러나 3개 위성강수 모두 지상계측강수와 비교하여 과소하게 추정되고 있는 것으로 분석되었다. 향후에는 본 연구를 통해 얻어진 결과를 반영하여 북한을 포함한 한반도 전체에 대한 강수량을 추정하는 연구를 수행할 계획이다.

Keywords

References

  1. Aonashi, K., J. Awaka, M. Hirose, T. Kozu, T. Kubota, G. Liu, S. Shige, S. Kida, S. Seto, N. Takahashi and Y.N. Takayabu. 2009. Gsmap passive microwave precipitation retrieval algorithm: Algorithm description and validation. Journal of the Meteorological Society of Japan 87:119-136. doi:10. 2151/jmsj.87A.119. https://doi.org/10.2151/jmsj.87.119
  2. Choi Y.S., J.H. Kim and J.S. Kim. 2020. Inundation analysis on the flood plain in ungauged area using satellite rainfall and global geographic data: In the case of Tumen/Namyang area in Duman-gang (Riv.). Journal of the Korean Association of Geographic Information Studies 23(1):51-64.
  3. Dandridge, C., V. Lakshmi, J. Bolten and R. Srinivasan. 2019. Evaluation of satellite based satellite based rainfall estimates in the Lower Mekong River Basin(Southeast Asia). Remote Sensing 11:2709. https://doi.org/10.3390/rs11222709
  4. Dembele, M. and S.J. Zwart. 2016. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing 37(17):3995-4014. https://doi.org/10.1080/01431161.2016.1207258
  5. Hong Y, Zhang Y., Khan S. 2016. Hydrologic remote sensing: Capacity building for sustainability and resilience CRC Press(2016). 395pp.
  6. Hong Y, G. Tang, Y. Ma, Q. Huang, Z. Han, Z. Zeng, Y. Yang, C. Wang and X. Guo. 2019. Remote sensing precipitation: sensors, retrievals, validations, and applications. In: Li X., Vereecken H.(eds) Observation and measurement of ecohydrological processes. Ecohydrology, vol.2. Springer, Berlin, Heidelberg p.107-128.
  7. Hoscilo, A., H. Balzter, E. Bartholome, M. Boschetti, P.A. Brivio, A, Brink, M. Clericic and J.F. Pekelc. 2015. A conceptual model for assessing rainfall and vegetation trends in Sub-Saharan Africa from satellite data. International Journal of Climatology. 35:3582-3592. https://doi.org/10.1002/joc.4231
  8. Kim, J.H., K.T. Kim and Y.S. Choi 2013. Fitness evaluation of CMORPH satellite -derived precipitation data in Korea. Journal of Wetlands Research 15(3):339-346. https://doi.org/10.17663/JWR.2013.15.3.339
  9. Kim, J.H., Y.S. Choi and K.T. Kim. 2015. Flow estimation using rainfalls derived from multiple satellite images in North Korea. Journal of the Korean Association of Geographic Information Studies 18(4):31-42. https://doi.org/10.11108/kagis.2015.18.4.031
  10. Kim, J.H., Y.S. Choi and K.T. Kim. 2017a. Evaluation for accuracy of IMERG at multiple temporal scales. Journal of the Korean Association of Geographic Information Studies 20(4):12-26.
  11. Kim, J.H., Y.S. Choi and K.T. Kim. 2017b. Estimation of flood discharge using satellite-derived rainfall in abroad watersheds-A case study of Sebou watershed, Morocco. Journal of the Korean Association of Geographic Information Studies 20(3):141-152. https://doi.org/10.11108/kagis.2017.20.3.141
  12. Kim, I.W., J. Oh, S. Woo and R.H. Kripalani. 2019. Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dynamics. 52:1317-1342. https://doi.org/10.1007/s00382-018-4193-4
  13. Ning, S.W., Wang, J., Jin, J.L., Ishidaira, H., 2016. Assessment of the latest GPMera high resolution satellite precipitation products by comparison with observation gauge data over the Chinese mainland. Water 8,(11), 481:1-7.
  14. NOAA Climate Prediction Center. 2011. Bias-corrected CMORPH: A 13-year analysis of high-resolution global precipitation. http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/REF/EGU_1104_Xie_bias-CMORPH.pdf (Accessed April 10, 2020)
  15. Prakash, S. Mitra, A.K. Pai, D.S. and AghaKouchak, A. 2016. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour 88:1-7. https://doi.org/10.1016/j.advwatres.2015.11.008
  16. Sharifi, E., Steinacker, R. and Saghafian, B., 2016. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens. 8, 24. https://doi.org/10.3390/rs8010024
  17. Sohn, B.J., H.J. Han, and E.K. Seo. 2010. Validation of satellite-based highresolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. Journal of Applied Meteorology and Climatology 49(4):701-714. https://doi.org/10.1175/2009JAMC2266.1
  18. Sun, R., Yuan, H., Liu, X. and Jiang, X., 2016. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River basin. J.Hydrol 536:302-319. https://doi.org/10.1016/j.jhydrol.2016.02.054
  19. Tan, M.L., Ibrahim, A.L., Duan, Z., Cracknell, A.P. and Chaplot, V. 2015. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens 7:1504-1528. https://doi.org/10.3390/rs70201504
  20. Tong, K., Su, F., Yang, D. and Hao, Z. 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J.Hydrol 519, 423-437. https://doi.org/10.1016/j.jhydrol.2014.07.044
  21. Xu, R., Tian, F., Yang, L., Hu, H., Lu, H. and Hou, A. 2017. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over Southern Tibetan Plateau based on a high density rain gauge network. J. Geophys. Res. -Atmos. 122:910-924. https://doi.org/10.1002/2016JD025418
  22. Yuan, F., L. Zhang, K. Soe and Y. Liu. 2019. Applications of TRMM- and GPM -Era Multiple-satellite Precipitation Products for Flood Simulations at Subdaily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sensing.11(2):140. https://doi.org/10.3390/rs11020140