DOI QR코드

DOI QR Code

Development of Soil Erosion Analysis Systems Based on Cloud and HyGIS

클라우드 및 HyGIS기반 토양유실분석 시스템 개발

  • 김주훈 (한국건설기술연구원 수자원연구실) ;
  • 김경탁 (한국건설기술연구원 수자원연구실) ;
  • 이진원 (한국건설기술연구원 하천해안항만연구실)
  • Received : 2011.09.05
  • Accepted : 2011.10.11
  • Published : 2011.12.30

Abstract

This study purposes to develop a model to analyze soil loss in estimating prior disaster influence. The model of analyzing soil loss develops the soil loss analysis system on the basis of Internet by introducing cloud computing system, and also develops a standalone type in connection with HyGIS. The soil loss analysis system is developed to draw a distribution chart without requiring a S/W license as well as without preparing basic data such as DEM, soil map and land cover map. Besides, it can help users to draw a soil loss distribution chart by applying various factors like direct rain factors. The tools of Soil Loss Anaysis Model in connection with HyGiS are developed as add-on type of GMMap2009 in GEOMania, and also are developed to draw Soil Loss Hazard Map suggested by OECD. As a result of using both models, they are developed very conveniently to analyze soil loss. Hereafter, these models will be able to be improved continuously through researches to analyze sediment a watershed outlet and to calculate R value using data of many rain stations.

본 연구는 사전재해영향성평가에서 토양유실 분석을 위한 모형을 개발하는 것을 목적으로 하고 있다. 토양유실 분석모형은 클라우드 컴퓨팅 개념을 도입한 인터넷기반 토양유실 분석 시스템과 HyGIS와 연계한 독립형(stand alone) 형태로 개발하였다. 인터넷기반 토양유실 분석 시스템은 사용자가 별도의 SW라이센스의 요구없이 또한 DEM, 토지피복도 등의 기본데이터를 구비할 필요없이 사용자가 직접 강우인자 등의 여러 인자를 적용하여 토양유실 분포도를 작성할 수 있도록 하였다. 또한 HyGIS와 연계한 토양유실 분석 모형의 개발 툴은 GEOMania GMMap2009의 Add-on 형태로 개발하였고, OECD에서 제안한 토양유실 위험 등급도도 작성할 수 있도록 개발하였다. 두 모형에 대한 토양유실 분석 적용 결과 두 모형 모두 사용상 매우 편리하게 개발된 것으로 판단된다. 향후 다수의 관측소 자료를 이용한 R값 계산, 유역 출구로 이송되는 토양을 분석하는 연구를 통해 본 모형을 지속적으로 개선할 계획이다.

Keywords

References

  1. 건설부, 한국건설기술연구원. 1992. 댐 설계를 위한 유역단위 비유사량 조사.연구. 287쪽.
  2. 김경탁, 김주훈, 최윤석, 박동선. 2003. Network 컴포넌트 기반의 수자원지리정보시스템에 관한 연구. 한국지리정보학회지 6(4):122-134.
  3. 김경탁, 최윤석, 김주훈. 2004. 하천 네트워크 기반의 유역관리시스템 개발을 위한 프로임 워크 공간 DB 구축에 관한 연구. 한국지리정보학회지 7(2):87-97.
  4. 김주훈, 오덕근. 2004. 빈도별 R인자에 의한 토양침식 위험지역 분석. 한국지리정보학회지 7(2):47-56.
  5. 김주훈, 이충대, 김경탁, 최윤석. 2007. WAMIS 토지피복도를 활용한 토양유실량 분석-무심천 유역을 대상으로. 한국지리정보학회지 10(4): 122-131.
  6. 박경훈. 2003. GIS 및 RUSLE기법을 활용한 금호강 유역의 토양침식위험도 평가. 한국지리정보학회지 6(4):24-36.
  7. 신계종. 1999. 지형정보체계를 이용한 토양유실분석. 강원대학교 대학원 박사학위 논문.
  8. 우효섭, 김창완. 1998. 개발사업으로 인한 토양손실량 예측 및 침사지 설계. 한국수자원학회, 제6회 수공학워크샵 교재, pp. I:10-19.
  9. 정필균, 고문환, 임정남, 김기태, 최대웅. 1983. 토양유실량 예측을 위한 강우인자의 분석. 한국토양비료학회지 16(2):112-118
  10. Angima S.D., Stott D.E, O'Neill M.K., Ong C.K. and Weesies G.A. 2003. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems, and Environment 97:295- 308. https://doi.org/10.1016/S0167-8809(03)00011-2
  11. Beasley, D.B., Huggins, L.F. and Monke, E.J., 1989. ANSWERS-a model for watershed planning. Trans Am Soc Agric Eng 23, 938-944.
  12. Dawen Yang, Shinjiro Kanae, Taikan Oki, Toshio Koike and Katumi Musiake. 2003. Global potential soil erosion with reference to land use and climate changes, Hydrological Processes 17: 2913-2928. https://doi.org/10.1002/hyp.1441
  13. Goldman, S.J., K. Jackson and T.A. Bursztynsky. 1986. Erosion and Sediment Control Handbook, Mc-Graw Hill, 5.1- 5.32pp.
  14. Goovaerts, P. 1999. Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 34:227-242. https://doi.org/10.1016/S0341-8162(98)00116-7
  15. Hickey, R. 2000. Slope angle and slope length solution for GIS. Cartography 29: 1-8.
  16. LU. D., G. LI., G.S. Valladares and M. Batistella. 2004. Mapping Soil Erosion Risk Rondonia, Brazilian Amazonia : Using RUSLE, Remote Sensing and GIS. Land Degradation & Develop. 15:499- 512 https://doi.org/10.1002/ldr.634
  17. Ma J.W., Y. Xue, C.F. Ma and Z.G. Wang. 2003. Linear mixture model applied to Amazonian vegetation classification methods in the Brazilian Amazonia basin. Photogrammetric Engineering and Remote Sensing 70:723-731.
  18. McCool, D.K., L.C. Brown, G.R. Foster, C.K. Mutchler and L.D. Meyer. 1987. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASCE 30:1387-1396.
  19. McIsaac G.F., J.K. Mitchell and M.C. Hirshi. 1987. Slope steepness effects on soil loss from distrurbed lands. Trans. ASCE 30:1005-1013.
  20. Merritt W.S., R.A. Letcher and A.J. Jakeman. 2003. A review of erosion and sediment transport models. Environmental Modelling & Software 18:761-799. https://doi.org/10.1016/S1364-8152(03)00078-1
  21. Mikhailova E.A., R.B. Bruabt, S.J. Schwqger and S.D. Smith. 1997. Predicting rainfall erosivity in Hounduras. Soil Science Society of America Journal 61:273-279. https://doi.org/10.2136/sssaj1997.03615995006100010039x
  22. Millward A.A., and J.E. Mersey. 1999. Adapting RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38:109-129. https://doi.org/10.1016/S0341-8162(99)00067-3
  23. OECD. 2001. Environmental Indicators for Agriculture Vol.3. Part 4. Soil Quality.
  24. Parysow P., G. Wang, G.Z. Gertner and A.B. Anderson. 2003. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. Catena 53:65-78. https://doi.org/10.1016/S0341-8162(02)00198-4
  25. Remortel, R.D., R.W. Maichle and R.J. Hickey. 2004. Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevatin data using a C++ executable. Computer & Geosciences 30(2004):1043-1053. https://doi.org/10.1016/j.cageo.2004.08.001
  26. Remortel, V.R., M. Hamilton and R. Hickey. 2001. Estimating the LS factor for RUSLE through iterative slope length processing of DEM elevatin data. Cartography 30(1):27-35. https://doi.org/10.1080/00690805.2001.9714133
  27. Renard K.G., J.R. Fremund. 1994. Using monthly precipitation date to estimate the R-factor in the revised USLE. Journal of Hydrology 157:287-306. https://doi.org/10.1016/0022-1694(94)90110-4
  28. Renard K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder. 1997. Predicting Soil Erosion by Water : A Guide to Conservaton Planning with the Revised Uinversal Soil Loss Equation (RUSLE). U.S. Dep. Agric., Agricultural Research Service. Agricultural Handbook. No. 703.
  29. Romken M.J.M. 1983. The soil erodibility factor : a perspective. Soil Erosion and Conservation 10:445-461.
  30. Sharpley A.N. and J.R. Williams. 1990. EPIC- Erosion/Productivity Impact Calculator: 1. Model Documentation. USDA Technical Bulletin 1768:235.
  31. Soil Survey Staff. 1997. National Soil Survey Handbook, Title 430-VI. USDA Natural Resources Conservation Service: Washington, DC.
  32. Transportation Research Board(National Research Council). 1980. National Cooperative Highway Research Program ynthesis of Highway Practice #70 (Design Sedimentation Basins).
  33. USDA. 1996. Predicting Soil Erosion by Water : A Guide to Conservation Planning with the RUSLE. Agriculture Handbook #703.
  34. Wang G., G. Wente, G.Z. Gertner, S. Shinkareva, and A. Anderson. 2003. Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogrammetric Engineerong and Remote Sensing 69:889-898. https://doi.org/10.14358/PERS.69.8.889
  35. Wang G., G.Z. Gertner, X. Lui, and A. Amderson 2001, Uncertainty assessment of soil erosibility factor for revised universal soil euqation. Catena 46:1-14. https://doi.org/10.1016/S0341-8162(01)00158-8
  36. Wang G., G.Z. Gertner, S. Shinkareva, P. Parysow, and A. Anderson. 2002. Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil euqation: a case study of the rainfall-runoff erosivity R Factor. Ecological Modeling 153:143- 155. https://doi.org/10.1016/S0304-3800(01)00507-5
  37. Williams, J.R. 1975. Sediment-yield predoctopn with universal euqation using runoff energy factor. p.244-252. In Present and prospective technology for predicting sedo,ent yield and sources: Proceedings of the sediment-yield workshop, USDA Sedimentation Lab., Oxford, MS, November 28-30, 1972. ARS-S-40
  38. Williams, J.R., C.A. Jones, and P.T. Dyke. 1984. A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE 27:129-144. https://doi.org/10.13031/2013.32748
  39. Wischmeier, W.H. and D.D. Smith. 1965. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains. U.S. Dep. Agric., Agricultural Research Service. Agricultural Handbook. No. 282.
  40. Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall Erosion Losses-A Guide to Conservaton Planning. U.S. Dep. Agric., Agricultural Research Service. Agricultural Handbook. No. 537.
  41. Young, R.A., C.A. Onstad, D.D. Bosch, and W.P. Anderson. 1989. AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation 44(2):168-173.

Cited by

  1. 효율적인 하천정보 서비스를 위한 RIMGIS 개선방안 연구 vol.16, pp.1, 2011, https://doi.org/10.11108/kagis.2013.16.1.015
  2. 범용토양유실공식(RUSLE) 기법을 활용한 금호강 수변지역의 토양유실위험도 비교 분석 vol.34, pp.2, 2011, https://doi.org/10.7780/kjrs.2018.34.2.1.2
  3. 토양유실을 고려한 양서파충류의 서식지 관리지역 선정방법 vol.21, pp.6, 2011, https://doi.org/10.13087/kosert.2018.21.6.55