• Title/Summary/Keyword: 과학 실험 수업

Search Result 602, Processing Time 0.031 seconds

Action Research to Improve Experimental Activities and Interactions in Online Science Class (온라인 과학 수업에서 실험 활동과 상호작용의 개선을 위한 실행연구)

  • Noh, Ja-Heon;Son, Jun-Ho;Kim, Jong-Hee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.159-172
    • /
    • 2021
  • This study is an action study that plans a instructional strategy for improving experimental activities and interactions in online science classes and suggests improvement plans based on the results. To this end, from July 7 to September 9, 2020, the 'Earth and the Moon' unit class was conducted for 20 6th grade elementary school students located in G Metropolitan City. For the class, smart devices and alternative experiments were planned in the experimental activity category, and an online chat room and Q&A strategy were planned in the interaction category. Among the collected data, class activity papers, homework assignments, reflection journals, online conversation contents, and Q&A contents were input into the matrix and analyzed by writing analytical texts. As a result of the implementation, smart devices and alternative experiments provided opportunities for exploration, but there was a risk of misconception formation and hindered experimental activities. The online chat room and Q&A provided opportunities for communication and examination and feedback on scientific concepts. Through this action study, the researcher was able to reflect on the class while writing class reflection notes, and suggested the role of smart devices in terms of the effectiveness and efficiency of science classes.

Exploring Ways to Improve Science Education Area Exam in Secondary School Teacher Employment Test (중등 과학과 교사임용시험의 교과교육학 시험 개선 방안 탐색)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.89-96
    • /
    • 2020
  • This study explores the characteristics and ways to improve the area of science education in secondary teacher employment test (hereafter, TET). We investigated ways to differentiate second-phase science education tests from those of the first phase in the TET, and ways to improve practical tests such as designing instructional plans, teaching demonstrations, in-depth interviews, and science experiment tests. Major findings of the study include increasing the proportion of teaching demonstration while maintaining the test of designing instructional plans, which have a different focus from the paper-based exam in the first phase of the TET. Teaching demonstration tests, applying the credit of student-teaching to the TET, assessing teaching expertise in real classroom contexts focusing on subject teaching expertise, etc. along with science experiment tests, making the science experiment test compulsory for all municipal offices of education, and the necessity of evaluating the experimental design and teaching of scientific inquiry. Based on these results, developing and implementing tests such as teaching demonstrations, in-depth interviews, etc. at the local municipal education offices, introducing the apprentice teacher system, and introducing graduate schools of education were suggested.

Development and Application of Practice Manual Focused on Science Topic Selection Stage in General High School (일반계 고등학교 과학과제 연구 수업의 주제 선정을 위한 실천 매뉴얼 개발 및 적용)

  • Kim, Aera;Park, Dahye;Park, Jongseok
    • Journal of Science Education
    • /
    • v.42 no.3
    • /
    • pp.371-389
    • /
    • 2018
  • This study focuses on the fact that students and teachers commonly have difficulty in 'selecting the topic' in many activities including student-led research that is conducted from topic selection to the drawing of conclusion. The purpose of this study is to develop a manual for science teaching research. The instructional manuals of 4 stages were developed based on practical knowledge that can be implemented in the actual class through previous research and literature. Each stage is composed of , , , and . In the third stage, students are expected to find scientific questions and develop them into research topics through detailed class research on newspaper articles, scientific magazines, traditional knowledge, proverbs, daily life, and textbook experiments. In the experimental group, the final research topic was selected through a variety of sources such as textbook experiments, proverbs, YouTube images, newspaper articles, individual WHY NOTEs, and understood the conditions of the scientific research topic and expressed the variables in the research title. However, in the control group, some students did not consider the research scope of the selected research subjects to be specific or not to be able to study at their level. As a result of giving the students as much autonomy as possible, many groups did not fully understand the previous research and submitted it. Based on the results of this study, it can be concluded that development and use of a 'topic selection stage' centered practice manual for general high school teachers would not only improve the students' abilities to discover solutions to scientific questions, but it will also help shift their attitudes towards science in a positive direction.

Effects of the Application of the Brain-Based Learning Model on the Self-Efficacy, Creative Problem-Solving Ability, and Academic Achievement of Elementary School Students in Science Classes (뇌 기반 수업 모형을 적용한 과학 수업이 초등학생의 과학 자기효능감, 창의적 문제해결력 및 과학 학업성취도에 미치는 효과)

  • Kim, Soojeong;Bae, Jinho
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.616-626
    • /
    • 2022
  • This study aims to investigate the effect of the application of the brain-based learning model on the self-efficacy, creative problem-solving ability, and academic achievement of elementary school students in science classes. The participants consisted of 22 students from one class (experimental group) and 22 students from another class (comparison group) of J Elementary School in B Metropolitan city. The experimental group conducted science classes that applied the brain-based learning model, and the comparison group conducted general explanatory science classes according to textbooks and the guide books of the teachers. The study found that science classes that applied the brain-based learning model exerted positive effects on the three abovementioned skills. Based on the results, the study confirmed that the application of the model is an effective learning tool that increases the self-efficacy, creative problem-solving ability, and academic achievement of for elementary school students in science classes.

The Effect of Science Writing Heuristic Laboratory Class on the Creative Thinking and Critical Thinking of Middle School Students (탐구적 과학 글쓰기 실험수업이 중학생들의 창의적 사고와 비판적 사고에 미치는 영향)

  • Park, Sungju;Moon, Seongbae
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1259-1272
    • /
    • 2013
  • The purpose of this study was to investigate the effects of Science Writing Heuristic (SWH) laboratory class on the creative thinking and critical thinking of middle school students. Science writing heuristic programs were developed based on SWH strategies developed by Keys et al (1999). This study was conducted on 63 students from two classes as the comparative group and 63 students from two other classes as the experimental group. The cognitive level of the group as a homogeneous group was similar, and the program was applied to a total of 18 periods based on nine topics from March to July 2011. Evaluation instruments used in pre-test and post-test were the creative and critical thinking tests. To consider the score for creative and critical thinking. the SPSS 20.0 program was used. The study made use of technical statistics and ANCOVA. The result of this study showed that creative problem solving skills were improved by SWH in laboratory class. Therefore, persistent presentation of SWH teaching strategies and developing various experiment topics are required.

Primary school teacher recognition for distance learning due to COVID-19 - Focusing on science classes - (COVID-19 상황에서 온라인 비대면 수업에 대한 초등교사의 인식 - 과학교과를 중심으로 -)

  • Kang, Eugene;Jeong, Dojun;Park, Jihun;Kim, Jina;Park, Jongseok;Nam, Jeonghee
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.4
    • /
    • pp.460-479
    • /
    • 2021
  • The crisis of the COVID-19 pandemic has caused significant changes in education systems worldwide, including in Korea. Due to COVID-19's social distancing policies, the education system was suddenly switched to distance learning, resulting in many problems in primary schools without preparation. The purpose of this study was to investigate a teacher's awareness of science education techniques, responses to issues in science classes, including inquiry activities, advantages and disadvantages, and roles after experiencing distance learning. Survey and focus interviews were conducted for primary school teachers who had previously participated in distance learning, such as online content classes and real-time interactive classes. The study findings showed three conclusions: 1) Primary school teachers conducted one-way and interactive lectures in online classes. It is vital to improve a teacher's digital literacy to improve other teaching methods such as investigation and discussion in online classes. 2) Primary school teachers acknowledged the challenges of field feedback, inquiry item preparations, and safety in inquiry activities of science classes, by providing individual experimental packages and videos and using online discussion and feedback among teacher - student and student - student interactions. 3) Primary school teachers recognized that various types of classes using IT devices and individualized learning were possible as advantages of distance learning. As for disadvantages, it was acknowledged that inquiry activities, cooperative learning, immediate feedback, and interaction among students were challenging. Furthermore, learning gaps were wider in distance learning.

The Effects of Problem-Solving Inquiry Teaching Using Concept Sketches on Conceptual Changes about Plate Tectonics and Science-Related Attitudes (개념스케치를 활용한 탐구 문제 해결 수업이 판구조론에 대한 개념 변화와 과학 관련 태도에 미치는 영향)

  • Kwon, Young Shin;Kim, Jeong Yul
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.267-276
    • /
    • 2014
  • The purpose of this study is to investigate the effects of problem-solving inquiry teaching using concept sketches on conceptual changes about plate tectonics and science-related attitudes. The subjects of this study were two classes of second-year students of K high school located at Anseong in Gyeonggi Province. Before instruction, a conceptual test was conducted to survey student's preconceptions about plate tectonics. The control group took a traditional lesson, while the experimental group was applied to problem-solving inquiry teaching using concept sketches. After the inquiry instruction, TOSRA (Test of Science-Related Attitudes) was administered to find out changes in science-related attitudes of the two groups. The results of this study are as follows. The experimental group understood concepts of plate tectonics better than the control group, which means that problem-solving inquiry teaching using concept sketches was more effective in students' conceptual understanding. Science-related attitudes of the experimental group showed a significant change in the categories of 'normality of scientists', 'pleasure of science lessons', and 'interests on science as a hobby'. In conclusion, the instruction of problem-solving inquiry using concept sketches produced students' positive changes in conceptual understanding about plate tectonics and science-related attitudes.

Characteristics of Teaching Orientation and PCK of Science Teachers in Online-offline Mixed Learning Environment (온-오프라인 혼합 학습환경에서 과학교사의 교수 지향과 PCK 특징)

  • Jisu Kim;Aeran Choi
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.441-461
    • /
    • 2023
  • This study explore characteristics of teaching orientation and pck of science teachers in online-offline mixed learning environment. Data consisted of open-ended survey, semi-structured interview, class observation, field notes from 12 science teachers. We categorized teaching orientation considering both science education goals and science teaching·learning orientation. There were 8 different teaching orientations such as 'understanding science concepts-lecture centered' 'constructing science concepts-inquiry based' 'applying science concepts and inquiry-inquiry based' 'applying science concepts and inquiry-lectured centered' 'analyzing and judging science information-inquiry based' 'developing scientific attitude-inquiry based' 'developing scientific attitude-lecture centered' and 'developing perception of interrelationships among science, technology, and society-inquiry based'. Teachers with inquiry based teaching·learning orientation seemed to have knowledge of science curriculum specific to online learning environment for student inquiry. While teachers with 'understanding science concepts-lecture centered' teaching orientation appeared to have questioning strategy of checking student understanding and strategy of repeating a lecture, teachers with 'constructing science concepts-inquiry based' teaching orientation appeared to have knowledge of instructional strategies to perform online group activities targeting student construction of knowledge and to replace face-to-face group activities with virtual experiments and individual experiments. While teachers with 'understanding science concepts-lecture centered' teaching orientation did not show knowledge of student science learning, teachers with 'constructing science concepts-inquiry based' teaching orientation appeared to have knowledge of student difficulties in inquiry based learning.

The Relationships among High School Students' Epistemological Views on Theory and Data, Science Process Skills, Perceptions of Preferred Laboratory Learning Environment and Attitudes toward Laboratory Work (고등학생들의 이론과 자료에 대한 인식론적 관점과 과학 과정 기술, 선호하는 실험 학습 환경에 대한 인식, 실험 수업에 대한 태도 사이의 관계)

  • Han, Su-Jin;Lee, In-Hye;Noh, Tae-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.643-649
    • /
    • 2010
  • In this study, the relationships among high school students' epistemological views on theory and data, science process skills, the perceptions of the preferred laboratory learning environment and attitudes toward laboratory work were investigated. The results indicated that science process skills, all subcategories of the perceptions of the preferred laboratory learning environment (student cohesiveness, open-endedness, integration, rule clarity, and material environment) and attitudes toward laboratory work were significantly correlated with epistemological views on theory and data. The results of multiple regression analysis revealed that science process skills, open-endedness and material environment and attitudes toward laboratory work significantly predicted epistemological views on theory and data.

Students' Perception of Teaching Activities and Verbal Interaction in Science Classes at the Gifted Science High School (과학영재학교 교수활동에 관한 학생인식 및 과학수업에서 상호작용 유형)

  • Park Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.30-40
    • /
    • 2005
  • The purpose of this study is to analyze gifted students' perception of the teaching activities at the gifted science high school (Busan Science Academy), in Busan, Korea, and to investigate the science experiment class practice. In this study, a questionnaire about the curriculum courses, teaching strategies, and evaluation method of the school was administered to 139 gifted students. The verbal interactions during the science experiment class were audio and videotaped, transcribed, and analyzed. The results of this study are as follows: First, according to the gifted students' perception, the credits of specialized courses and advanced elective courses need to be increased and the credits of general courses need to be reduced. Second, teachers at this school mainly use teaching strategies such as lecture, group activities, and discussion; on the other hand, the students prefer diverse teaching strategies such as discussion, lecture, experiment, inquiring activities, and problem solving. Third, students prefer a writing test assessment rather than a written report assessment or portfolio assessment. Fourth, the patterns of verbal interaction were different depending on the level of the teachers' questions and interactions between the students in the experiment class facilitated students' inquiry.