• Title/Summary/Keyword: 과학 교육 과정

Search Result 3,459, Processing Time 0.031 seconds

The Design of Integrated Science Curriculum Framework Based on Big Ideas (Big idea를 중심으로 한 통합형 과학 교육과정 틀 설계)

  • Bang, Dami;Park, Eunmi;Yoon, Heojeong;Kim, Ji;Lee, Yoonha;Park, Jieun;Song, Joo-Yeon;Dong, Hyokwan;Shim, Byeong Ju;Lim, Hee-Jun;Lee, Hyun-Suk
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.5
    • /
    • pp.1041-1054
    • /
    • 2013
  • Big ideas are overarching principles that help students to build a holistic understanding of domain-specific knowledge and assimilate individual facts and theories. This study aims to design a standard-based integrated science curriculum framework based on Big Ideas. The core contents were extracted by analysing the 2009 National Science Standards curriculum of primary and middle schools. Four Big Ideas, 'diversity,' 'structure,' 'interaction,' and 'change,' were generated after the process of examination and categorization of core contents. The scientific facts, disciplinary concepts, and interdisciplinary concepts of every scientific domains included in each Big Idea are represented as a knowledge pyramid. Essential questions guiding the direction of curriculum design were proposed on each Big idea. Based on the framework, teaching modules for 'structure' were developed for grades 5~6.

Analysis of Science Social Emotions Learning on Secondary Science Curriculum Achievement Standards and Textbooks (과학과 교육과정 성취기준과 교과서의 사회정서학습 요소 분석)

  • Kim, Seo Young;Park, Hyun Ju
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • This study investigated and analyzed the social and emotional learning components of middle school science, and high school integrated science and science inquiry experiments, which are common subjects that all students must complete. The subjects of analysis were 139 achievement standards of science and curriculum and 496 activities included in textbooks. The research results are as follows. In the case of curriculum achievement standards, 'cultural understanding' was hardly included among the seven science and social-emotional learning elements, 'numeracy' and 'creative thinking' appeared high in middle school, 'critical thinking', 'social technology' and 'ethical understanding' were included with high frequency in high school. And in the case of textbook activity, the tendency of social-emotional learning elements in middle school and high school was similar. 'critical thinking', 'creative thinking', and 'social skills' were mainly provided, while 'ethical understanding' and 'cultural understanding' were reflected in a limited way. In order to cultivate the elements of overall social-emotional learning, it is necessary to specify the achievement standards of the curriculum or to supplement the textbook activities and teaching-learning process.

Analyses of Scientific Inquiry in Science 8 (중학교 2학년 과학 교과서의 탐구 영역 분석)

  • Park, Hyo-Soon;Cho, Hee-Hyung
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • The primary purpose of the study was to determine the appropriateness o the inquiry processes and its activities as described in Science 8's which were written according to the 7th National Science Curriculum. It was found that the basic processes were well reflected on the textbooks analyzed for the research. However, only a few integrated processes and the inquiry activities could be read on the same textbooks. Furthermore, a large majority of the inquiry processes and activities were not agreed with what the tasks and titles say. Especially, the none of as many as 216 experiments were not coincided with their titles' intentions. Also suggested in the paper were the implications of the results for inquiry-based science education in the Korean middle schools.

Exploring the level of nature of science and its degree of revising curriculums: The case of the 7th and 2009 revised curriculums (교육과정 개정에 따른 과학의 본성 수준 및 반영정도 탐색 : 7차 및 2009 개정교육과정사례 분석)

  • Lee, Jeong-Won;Park, Young-Shin;Jeong, Da-Hye
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.217-232
    • /
    • 2016
  • In line with the emphasis on the importance of nature of science recently, this paper examines the degree and level at which the 2009-revised convergence science textbook, developed from the common science under the 7th curriculum in South Korea, reflected nature of science according to the development of curriculum. 'Nature of science' was classified according to scientific view - which represents scientists' view - and naive view - which represents general thinking and scientific error concepts. Also, 'Nature of science' was classified according to the explicit method and implicit method in terms of teaching method. The level of nature of science was defined using the four occasions of scientific view, naive view, explicit teaching and implicit teaching. In order to identify the components and level of nature of science reflected in the textbook, using the 10 items which refer to Lederman(2001)'s 7 definitions, NOSAT (Nature of Science Analyzing Tool) was developed and used. The results are that, since the educational curriculum is changed from common science under 7th curriculum to 2009-revised convergence science, the degree of reflection was rather a withdrawal. On parts of theories of 7th common science curriculum except research parts, it was difficult to find explicit nature of science. Also on 2009-revised curriculum, nature of science, which is seen on 2007 curriculum, disappeared. It is suggested that the future curriculum emphasizes the importance of nature of science, and bolster the reflection of nature of science according to the changing curriculum. Nature of science should not be expressed limitedly, but instead, should be more positively reflected, and the reflection method should be not implicit but explicit, allowing direct teaching. Towards that end, writers of the textbook should have an accurate understanding of nature of science. And, for the right teaching, teachers' capabilities are important and it is necessary to train teachers to understand and act for nature of science.

An Evaluative Study on the 7th National Elementary-school Science Curriculum Implementation (제7차 초등 과학과 교육과정 운영 실태 분석)

  • Kwak, Young-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.1028-1038
    • /
    • 2004
  • This study investigated how the 7th national elementary school science curriculum was implemented at science classrooms. Data from surveys with 140 elementary schools, 18 science classroom observations, and in-depth interviews with teachers were used to examine the characteristics of elementary school science instruction. Based on the data, I explored (1)how science curriculum is operated in terms of objectives, contents, methods and evaluation of school science, and (2)how student-centeredness and localization themes are reflected on the reconstructed school science curriculum. It was found that the degree of the reorganization of the national curriculum at the teacher level was minimal. And most of the elementary teachers followed the directions and contents of the science textbook and teacher's guidebook regardless of their own local situations. For most teachers, restructuring science curriculum meant reordering the sequences of the contents, and adding or deleting some units or topics. I also examined why elementary teachers have difficulty in reconstructing science curriculum at the classroom level. The necessity of curriculum reconstruction at the teacher level is also discussed.

Science Education Based on Constructivist Perspectives (구성주의 특성에 따른 과학교육)

  • Choi Kyung-Hee;Cho Hee-Hyung
    • Journal of Science and Technology Studies
    • /
    • v.2 no.2 s.4
    • /
    • pp.91-122
    • /
    • 2002
  • Constructivism has had a great influence on science education over the last two decades. The purpose of this article is twofold: First, to describe the characteristics of constructivism and, second, to suggest an ideal forms of science education in Korea as implied in constructivism. A review of the literature in the first area shows that constructivism is the philosophical/ psychological view which believes in the social nature of the construction of scientific knowledge and its learning. And the analyses of a few schools of constructivism suggests decision-making as a goal of science education, loaming as the active construction of meaning through interaction between learner and learning environments, and discussion and cooperation as appropriate teaching strategies. At the same time, the results necessitate teaching ethical aspects of science in the secondary schools, and also imply that performance assessment must be emphasized in evaluation of science education.

  • PDF

Development and Validation of Visual Representation Competence Taxonomy (과학 교수 학습을 위한 시각적 표상 능력의 교육목표 분류체계 개발 및 타당화)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • Various forms of visual representations enable scientific discovery and scientific reasoning when scientists conduct research. Similarly, in science education, visual representations are important as a means to promote students' understanding of science concepts and scientific thinking skills. To provide a framework that could facilitate the effective use of visual representations in science classroom and systemic science education research, a visual representation competence taxonomy (VRC-T) was developed in this study. VRC-T includes two dimensions: the type of visual representation, and the cognitive process of visual representation. The initial categories for each dimension were developed based on literature review. Then validation and revision was made by conducting teachers' workshop and survey to experts. The types of visual representations were grouped into 3 categories (descriptive, procedural, and explanative representations) and the cognitive processes were grouped into 3 categories (interpretation, integration, and construction). The sub categories of each dimension and the validation process would be explained in detail.

Consideration on the Contents of the Electromagnetism Domain in the 2022 Revised Elementary School Science Curriculum (2022 개정 초등학교 과학과 교육과정의 전자기 영역 내용 구성에서 고려해야 할 것)

  • Cheong, Yong Wook;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • With the science curriculum about to be revised in 2022, this study aimed to guide curriculum revision by addressing suggested approaches to the electromagnetism education in elementary school science curriculum. The core concepts of electromagnetism are "electric field" and "magnetic field" as a medium of force, but the current curriculum does not properly describe the core concepts of electromagnetism. Mechanics and electromagnetism should be linked in elementary schools to form science curriculum based on core concepts to solve this problem. Additionally, the nine aspects of technology extracted in this study offer various educational contexts to match the development of engineering technology based on electromagnetism. However, the current curriculum does not comprise these various contexts and focuses on the limited content of electric circuits using light bulbs. Therefore, it is necessary to expand the scope of the curriculum to better mirror real-life technology. Through the use of more diverse materials and contexts, the scope and level of STS education as well as conceptual learning could be expanded. Finally, in the case of electric circuit learning, various issues such as difficulty in connecting electric circuits and electric field concepts, representativeness of electric circuit, students' learning difficulty, and phenomena-oriented learning should be considered.

An Analysis of Content-related Issues of Curriculum for the Improvement of Contents in Science Education (과학과 교육 내용 개선을 위한 교육과정 내용 관련 쟁점 분석)

  • Lee, Jaebong;Kim, Yong-Jin;Paik, Seoung-Hey;Lee, Ki-Young
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.140-154
    • /
    • 2010
  • The core of subject matter education is determined by the choice of subject matter taught to students and by the organization of content according to educational objectives. The purpose of this research is to suggest ways to improve the present content of science education so as to prepare students and schools for a radically different future. We deduced the main issues the solution of which could lead to significant improvements in the contents of science education by analyzing previous studies and investigating the changes in content that were effected during curriculum revisions in the past. The main issues thus revealed through this study are as follows: the essence of the contents of subject matters in science education, the social and cultural background of change in the science curriculum, the rational steps on the way to choosing contents as part of the science curriculum, the processes of choosing the main contents of each subject, the international comparative study of contents, the updating of contents for the benefit of future society, and the reorganization of subject contents. In order to find a concrete improvement on the issues deduced, we organized an expert group. Then, we proceeded to collect and analyze the experts' opinions. A survey was administered to 19 science education experts working with universities and colleges of education. We examined their degree of agreement on the issues and problems, and on the steps that may be taken to us the improvements on these issues. we suggested that: collecting opinion and reaching an agreement on the essence of the contents of the subject matters in science education, the necessity to choose core contents within the scientific domain, developing a structure map in order to integrate and connect various subject domains, presenting explicitly the objective of inquiry by grades, moving toward integrating science contents, diversifying the construction of science textbooks.

  • PDF

Study on the status and gifted students' perception on the curriculum implementation of Busan Science Academy (과학영재학교 교육과정 운영실태와 학생 인식 분석)

  • Park, Soo-Kyong;Choe, Ho-Seong;Park, Il-Young;Jung, Gwon-Sun
    • Journal of Gifted/Talented Education
    • /
    • v.13 no.4
    • /
    • pp.45-63
    • /
    • 2003
  • The purpose of this study is to analyze the status and gifted students' perception on curriculum implementation for gifted education at Busan Science Academy. For the purpose, we investigated the curriculum documents, the process of implementing curriculum and the result of the questionnaire. The questionnaire about the curriculum courses, teaching strategies and evaluation method was answered by 143 students at Busan Science Academy. The curriculum courses are composed of general courses and specialized courses: general courses comprise of Korean language, social studies, foreign languages, arts, and physical education. Specialized courses consist of mathematics, physics, chemistry, biology, earth science, information science. Elective courses are divided into basic elective courses and in-depth courses. Each in-depth course deals with more specialized content. The significant results of the questionnaire are as follows: First, according to gifted students' perception, the credits of specialized courses and in-depth elective courses need to be increased and the credits of general courses need to be reduced. Second, teachers at this school mainly use teaching strategies such as lecture, group activities and discussion, but the students prefer diverse teaching strategies such as lecture, discussion, experiment, individual research, problem solving and field studies. Third, students prefer a paper-and-pencil testing assesment rather than a written report assesment and lab experiment assesment. According to this study, the characteristics of the acceleration curriculum at Busan Science Academy were too intensive. Thus it is difficult to implement the enrichment education according to the demand of gifted students in this school. Therefore, this study suggests that we need to revise the curriculum courses of Busan Science Academy and develop contents and strategies for gifted education in science and mathematics.