• Title/Summary/Keyword: 과학탐구활동

Search Result 640, Processing Time 0.025 seconds

The Change of Middle School Students' Cognitive Engagement in the Extended Science Investigations (확장적 과학 탐구 활동에서 중학생의 인지적 참여도 변화)

  • Yoon, Hye-Gyoung;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.684-695
    • /
    • 1999
  • In this study, the 'extended science investigation' was conceptualized as a comprehensive science investigation contrasted with exercise of process and skill component and cookbook style experiment. The extended investigation tasks can be characterized with practical context. openness and continuity. The purpose of this study is to describe the change of students' cognitive engagement while they perform the extended science investigations and to explore how the characteristics of the extended investigation tasks affect the students' cognitive engagement. 128 7th graders attending coeducational school in Seoul were participated in this study. The questionnaire was implemented repeatedly to monitor students' cognitive engagement. And ten students were interviewed to explore the cause of the change of cognitive engagement. The result showed that there was no difference between directive traditional investigations in textbook and developed extended investigations in understanding of the content and whole process of investigations but participants' commitment was increased significantly in the extended science investigations. Especially the extent of students' understanding and commitment became higher in the second half than in the first half of the extended science investigations. The openness of the extended investigation tasks contributed on the increase of commitment. And the continuity of the tasks contributed on the increase of students' understanding in the second half of the extended science investigations.

  • PDF

A Case Study on the Inquiry Guidance Experiences of Pre-Service Science Teachers : Resolving the Dilemmas between Cognition and Practice of Inquiry (예비 과학교사의 탐구지도 경험에 관한 사례연구 : 탐구의 인식과 실천 사이의 딜레마 해소를 중심으로)

  • Cho, Sungmin;Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.4
    • /
    • pp.573-584
    • /
    • 2015
  • Inquiry has been consistently emphasized in science education as a crucial element for learning. Although many researchers came to agree on the importance of scientific inquiry, authentic inquiry activities are hard to be actualized in an educational context. Therefore it is required to critically examine what teachers have difficulty in teaching inquiry. In this article, we looked into inquiry-based science activities in a small group setting where pre-service science teachers faced dilemmas between cognition and practice of inquiry. A case study was conducted on eight undergraduate students who are majoring in science education. The participants attended a weekly science program for middle school students in low SES as teaching assistants and mentors, and took full care of his/her mentees during open-inquiry activities. The results were drawn by analyzing participants' personal and group interviews, participant observations, self-reports, and others. The pre-service teachers viewed the knowledge and procedure of science as an essential factor in inquiry activities along with student's spontaneous attitude. However, in the process of performing inquiry, they faced several dilemmas between ideal cognition and real activities. The aspects of dilemmas could be summarized in three pairs of opposing concepts: 'diverging inquiry or converging science', 'interest-centered inquiry or learning-centered inquiry', and 'student as the subject or student with the insufficient expertise.' We discussed ways of resolving dilemmas and alternative perspectives on scientific inquiry.

A Comparative Study on Physics Inquiry Activities in Science Textbooks for Primary School in Korea and Singapore (우리나라와 싱가포르의 초등학교 과학 교과서에 제시된 물리 영역 탐구 활동의 특징 비교)

  • Jung, Hana;Jhun, Youngseok
    • Journal of Science Education
    • /
    • v.36 no.1
    • /
    • pp.139-152
    • /
    • 2012
  • The purpose of this study is to provide some suggestions for future improvement of scientific inquiry activities in Korean elementary science textbook. The modified framework of Lee(2005) and Millar et al.(1998) was used to compare inquiry activities in the Korean and Singaporean science textbooks. The results of this study are as follows: Korean text books have more activities than Singapore's, but both countries have similar time allotment for science classes. In the area of 'inquiry process skill', Singapore is more balanced in 'Basic inquiry process skills' and 'Integrated inquiry process skills' than Korea. Singapore's integrated inquiry rate is also higher than Korea's. Next the results of comparing leaning objectives to scientific inquiry activities shows that Korean text books tend to focus on 'contents objectives', while Singapore's text books focus on balancing 'contents objectives' and 'process objectives'. Korean science textbooks encourage students to communicate the results of experiments but in most case these communication activities are actually not performed. Lastly Korea and Singapore have low degree of openness in inquiry activities. Remarkably 'Suggest questions' are totally conducted by teachers. This study implies that Korean science textbooks should have lower amounts of inquiry activities to accomodate enough time for communication about results. Next we need to make balance not only 'Basic inquiry process skills' and 'Integrated inquiry process skills' but also 'Content objectives' and 'Process objectives'. Lastly we need to make student to be the leader in science classes through encouraging them to plan procedures for experiments and to discover results by themselves.

  • PDF

Understanding of Scientific Inquiry Developed by Beginning Science Teachers in Professional Learning Community (교사학습공동체 활동을 한 초임중등과학교사의 과학 탐구에 대한 이해)

  • Kim, Yurim;Choi, Aeran
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.221-232
    • /
    • 2019
  • Despite the continuing emphasis on the importance of scientific inquiry, research studies have commented that authentic scientific inquiry is not implemented in school science classroom due to a lack of understanding of scientific inquiry by the teacher. The purpose of this study is to investigate understanding of scientific inquiry developed by beginning teachers through open-ended questionnaire and semi-structured interview. They voluntarily set up the goal of inquiry-based classes, planned inquiry-based classes, shared and reflected their teaching experience in professional learning community for more than a year. It appeared that participant teachers understood scientific inquiry as 'what scientists do', 'process how students do science' and 'science teaching methods.' All teacher participants described scientific inquiry as 'what scientists do', and understood 'the process of doing scientific investigation to solve problems related to natural phenomenon' and 'the process of constructing scientific knowledge using scientific practice.' Two participant teachers seemed to understand scientific inquiry as a 'teaching method' based on the understanding of the process how scientists or students do science. Participant teachers had a limited understanding of scientific inquiry that it is the same as laboratory works or hands-on activities prior to engaging the professional learning community, but they developed an understanding of scientific inquiry that there are various ways to conduct scientific inquiry after engaging in professional learning community.

The Exploration of Open Scientific Inquiry Model Emphasizing Students' Argumentation (학생의 논변활동을 강조한 개방적 과학탐구활동 모형의 탐색)

  • Kim, Hee-Kyong;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1216-1234
    • /
    • 2004
  • School science practical work is often criticized as lacking key elements of authentic science, such as peer argumentation or debate through which social consensus is obtained. The purpose of this paper is to review the recent studies about the argumentation and to explore the conditions and the model of argumentative scientific inquiry, which is specially designed open inquiry in order to facilitate students' peer argumentation. For this purpose, a theoretical discussion for the argumentative scientific inquiry as the way of authentic inquiry in schools was developed. The conditions for argumentative scientific inquiry were found to be the following: multiple arguments, students' own claims, opportunities for oral and written argumentation, equal status of debaters, and community of cooperative competition. For these conditions, the argumentative scientific inquiry was organized into experiment activities and argumentation activities. During argumentation activity, students should be guided to advance written argumentation through writing a group report for peer review and oral argumentation through a critical discussion. Through the argumentation between groups and in group, the students' arguments would be elaborated repeatedly. The feedback from argumentation links experiment activities to argumentation activities. Hence, the whole process of this inquiry model is circular.

An Analysis of the Authentic Inquiry Components in Science Inquiry Experiments Textbooks Developed Under the 2015 Revised National Curriculum (2015 개정 교육과정에 따른 과학탐구실험 교과서에 나타난 참탐구 요소 분석)

  • Lee, Jaewon;Lee, Kyuyul;An, Jihyun
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.183-195
    • /
    • 2019
  • In this study, we investigated the characteristics of the authentic inquiry components in the inquiry tasks of Science Inquiry Experiments textbooks developed under the 2015 Revised National Curriculum. After classifying inquiry tasks by core concepts, we analyzed the cases that students autonomously planned or performed the authentic inquiry components. The results of the study revealed that investigating multiple materials component most frequently appeared in all units. However, generating research question, selecting variables, observing multiple variables and transforming observations components appeared in a few tasks of history and everyday science units as they were often guided or structured in textbooks. Controlling simple or complex variables, observing intervening variables and considering methodological flaws components rarely appeared in all units as most of textbooks did not consider or indicate explicitly. Authentic inquiry components of everyday science unit tended to be handled in small group activities. On the bases of the results, the implications for the development of the inquiry tasks of Science Inquiry Experiments textbooks are discussed.

Analysis of Scientific Inquiry Activities in the Astronomy Section of School Science Textbooks (과학 교과서 천문 단원의 탐구 활동 분석)

  • Kim, Kyoung-Mi;Park, Young-Shin;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.204-217
    • /
    • 2008
  • This study analyzed the inquiry activities appearing in the astronomy sections of elementary, middle and highschool level science textbooks according to the five essential features of inquiry in the classroom as proposed by the National Science Education Standards (NRC, 2000), and SAPA (Science-A Process Approach). On the basis of this analysis, it is clear that the science textbook inquiry activities released the limitation to meet the goal of science education, namely scientific literacy, as it has been laid out by the 7th Science Educational Curriculum. This study revealed that the features of scientific inquiry which are most frequently used in the astronomy sections of science textbooks are 'data collection' and 'form explanation', whereas the features of 'oriented-question', 'evaluate explanations' and 'communicate and justify' rarely appeared. The analysis of inquiry activities by SAPA showed that the basic inquiry skills of 'observing', 'communicating' and 'manipulating materials' were used with increasing frequency according to grade level, and the integrated skills of 'investigating', 'creating models', 'interpreting data' and 'experimenting' were more emphasized in the textbooks. Therefore, it is suggested that students be provided with more opportunities to experience all the features of scientific inquiry and scientific processes as envisioned by the 7th Science Educational Curriculum in order to achieve the stated goal of scientific literacy. Science educators should be required to develop new lesson modules which will allow students to experience authentic scientific inquiry. It is crucial for science teachers to reflect upon and develop their understanding and teaching strategies regarding scientific inquiry through professional development programs in teacher education.

고등학교 지구과학 탐구활동에서 소그룹의 상호작용 양식에 따른 반성적 탐구양식의 특징

  • Park, Mi-Ra;Jeong, Jin-U
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.231-244
    • /
    • 2005
  • 이 연구는 고등학교 지구과학 탐구활동에서 소그룹활동을 학생들의 대화를 중심으로 분석하고, 반성적 탐구활동이 교육과정별로 어떤 차이를 보이고 소그룹내의 상호작용특성에 따라 반성적 탐구양식의 차이가 어떠한지 알아보는 것이다. 그럼으로써 학생들이 어떤 반성적 탐구양식을 보이며 어떻게 발달시키는지에 관한 이해를 제공하고, 수업속의 맥락은 이러한 반성적 탐구학습을 증진시키고 억압하기위해서 어떻게 상호작용 하는지를 알아보고자 하였다. 이에 대한 연구문제로 소그룹을 이용한 탐구활동 수업과 반성적 탐구활동수업 중 반성적 에피소드의 차이가 있는가, 소그룹내의 그룹상호작용의 특징에 따른 반성적 탐구유형의 차이는 있는가를 설정하였다. 이를 위해 고등학교 1학년 2개 학급을 선정 기존의 우리나라 교육과정에 의거한 탐구활동수업 4차시, 반성적 탐구교육과정 수업 4차시를 각각 실시하고 수업을 녹화 전사해서 언어행동 분석틀과 반성적 탐구의 3가지 맥락을 통해 분석하였다. 연구 결과 두 교육과정 모두 도입에서 두 교육과정 모두 A-AD맥락의 반성적 탐구가 전형적으로 자주 나타나며, 반성적 탐구 교육과정수업에서는 AD-SR가 주로 나오는 것으로 보아 과제활동초기에 역할 분담과 과제 활동의 전략을 세우며, 전략을 세울 때 영역개념을 이용하는 것을 안수 있었다. 우리나라 교육과정 수업에서는 반성적 탐구진술이 간단하고 계획과정이 짧으며, 주로 과제 맥락 내에서 반성적 탐구를 하는 것으로 나타났다. 전개부분에서는 두 교육과정모두 DI-DP, DI-A맥락의 반성적 탐구가 나타나 자료 항목과 자료 패턴 그리고 인공물과 관련시키는 반성적 탐구가 공통적으로 나타나며 반성적 교육과정수업에서는 대체로 자료 맥락의 영역개념과 과제 맥락을 연결시키는 반성적 탐구가 잘 나타나고 있다. 반면 우리나라 교육과정에서 주로 과제 맥락 내에서 반성적 탐구가 나타났다. 정리단계에서는 반성적 교육과정 수업에서는 DC-DP가 주로 나타났으며 우리나라 교육과정수업에서는 DC-DP DP-AD맥락의 반성적 탐구가 나타났다. 정리활동에서 우리나라 교육과정은 반성적 교육과정보다 자료 맥락의 영역개념을 더 자주 이용하고 다양한 맥락의 반성적 탐구가 나오고 있으며, 이는 우리나라 교육과정의 학습지의 활동이나 문제는 학생들에게 익숙하고, 자료 패턴을 가지고 행동결정으로 연결짓는 활동이 명확히 제시되었기 때문이라고 판단된다. 두 그룹의 상호작용 특징에 따른 반성적 탐구의 성향의 차이는 도입단계에서 그룹의 특징과 상관없이 A-AD, AD-SR맥락의 반성적 탐구가 나왔으며 전개와 정리단계에서는 N그룹에서는 DP와 관련된 의미 있는 반성적 탐구가 나오는 반면 M그룹에서는 이러한 맥락의 반성적 탐구는 아주 드물게 나타나며, GN과 관련된 행동결정이 자주 보이고 있었다. 정리활동시 주로 하는 기록 활동에서 N그룹에서는 다양한 맥락에서 반성적 탐구를 하고 있는 것에 비해 비교 그룹에서는 서로 견제하고 확인하는 상호작용의 특징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다

  • PDF

Analysis of the Scientific Inquiry Problem Generated by the Scientifically-Gifted in Ill and Well Inquiry Situation (구조화 정도가 다른 탐구 상황에서 과학영재들이 생성한 과학탐구문제 비교 분석)

  • Ryu, Si-Gyeong;Park, Jong-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.860-869
    • /
    • 2008
  • The purpose of this study is to suggest an instructional direction for improving scientific inquiry problem-finding ability of the scientifically-gifted. For this purpose, this study has made an in-depth analysis of the scientific inquiry problems generated by the scientifically-gifted in Problem-Finding Activity in Ill-structured Inquiry Situation (PFAIIS) and Problem-Finding Activity in Well-structured Inquiry Situation (PFAWIS). The results of this study turned out to be as follows: First, most of the problems generated in PFAIIS and PFAWIS could be categorized into seven types (measurement, method, cause, possibility, what, comparison, relationship) according to the inquiry objectives, while the frequency of each type shown in each inquiry objective was a little different. Second, the frequency of scientific concepts stated in inquiry problem was more in PFAWIS than in PFAIIS. But the scientific concepts were shown more diversely in PFAIIS than in PFAWIS. Therefore, results of this study have the following educational implications. First, it is necessary to offer various opportunities of problem-finding activity under ill-structured scientific Inquiry situation. Second, it is needed to emphasize that a new inquiry problem can be found out even during general scientific experiment and frequently to discuss inquiry problems generated during an experiment. Third, it is needed to encourage the scientifically-gifted to generate a scientific inquiry problem based on at least more than seven types.

Analysis of Activity Process of Gifted Students Shown in Field Trip Activity Emphasizing Open Inquiry (개방적 탐구를 강조한 탐방 활동에서 나타난 초등과학 영재학생들의 활동 과정 분석)

  • Lee, Kun-Hee;Kim, Sun-Ja;Park, Jong-Wook
    • Journal of Gifted/Talented Education
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 2009
  • Science field trip is a comprehensive learning activity in which students can solve problems by themselves, whose importance is emphasized in learning for the gifted. But because not much study has been done yet on this, and convergent activities such as solving too many problems or requesting given answers have generally been done, it has been criticized for not being enough to develop the abilities of gifted Students. Therefore, this study attempted to analyze the activity process of the gifted through field trip to which open inquiry is adapted so that the demands of the gifted can be met, and the abilities of the gifted can be brought out. The study focused on 18 gifted elementary science students at Institute of Science Gifted Education, Cheongju National University of Education, and in the field trip process of the students, analyzed the types of establishment of inquiry problems and inquiry process, and the behavioral characteristics of gifted science students shown during field trip activity through field trip proceedings, transcript contents, poster materials, questionnaires, etc. As a result, more inquiry problems were established after than before inquiry, and the level of inquiry problems was also higher after inquiry. The solution process for inquiry problems of the gifted science students were done in the following order: planning, inquiring, follow-up inquiring and consolidating. But it proceeded to open inquiry process, the next stage being decided according to circumstances. Also, in the inquiry that the students did, diverse factors were revealed such as basic and integrative inquiries, and especially, the students were competent in analyzing the results after transforming and interpreting them. And the analysis of the interaction among the students showed many behavioral traits of talented science students.