• Title/Summary/Keyword: 과소지역

Search Result 263, Processing Time 0.033 seconds

A Study on the Population Estimation of Small Areas using Explainable Machine Learning: Focused on the Busan Metropolitan City (해석가능한 기계학습을 적용한 소지역 인구 추정에 관한 연구: 부산광역시를 대상으로)

  • Yu-Hyun KIM;Donghyun KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.97-115
    • /
    • 2023
  • In recent years, the structure of the population has been changing rapidly, with a declining birthrate and aging population, and the inequality of population distribution is expanding. At this point, changes in population estimation methods are required, and more accurate estimates are needed at the subregional level. This study aims to estimate the population in 2040 at the 500m grid level by applying an explainable machine learning to Busan in order to respond to this need for a change in population estimation method. Comparing the results of population estimation by applying the explainable machine learning and the cohort component method, we found that the machine learning produces lower errors and is more applicable to estimating areas with large population changes. This is because machine learning can account for a combination of variables that are likely to affect demographic change. Overestimated population values in a declining population period are likely to cause problems in urban planning, such as inefficiency of investment and overinvestment in certain sectors, resulting in a decrease in quality in other sectors. Underestimated population values can also accelerate the shrinkage of cities and reduce the quality of life, so there is a need to develop appropriate population estimation methods and alternatives.

Evaluation of Peak Ground Acceleration Based on Seismic Design Standards in Sejong City Area Using Gyeongju-Pohang Type Design Seismic Waves (경주·포항형 설계지진파를 활용한 세종시 지역의 내진설계기준 지표면최대가속도 성능평가)

  • Oh, Hyun Ju;Lee, Sung Hyun;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.41-48
    • /
    • 2024
  • In 2017, the Ministry of the Interior and Safety conducted research for the revision of seismic design standards and performed studies on standard design response spectra. As a result, the Common Application Guidelines for Seismic Design Standards were introduced, and these guidelines have been implemented in the national design standards of the Ministry of Land, Infrastructure, and Transport for practical use. However, it should be noted that the research for proposing standard design response spectra during the 2017 revision was conducted before the occurrence of the significant seismic events in South Korea, such as the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake. To account for these recent major earthquakes, this study adjusted the standard design spectra based on the records of the 2016 Gyeongju Earthquake and the 2017 Pohang Earthquake and conducted ground response analyses accordingly. The results revealed variations in peak ground acceleration (PGA) at the ground surface even within the same ground classification. It was confirmed that this variation can lead to overestimation or underestimation of seismic loads.

Occurrence and Behavior Analysis of Soil Erosion by Applying Coefficient and Exponent of MUSLE Runoff Factor Depending on Land Use (국내 토지이용별 MUSLE 유출인자의 계수 및 지수 적용을 통한 토양유실 발생 및 거동 분석)

  • Lee, Seoro;Lee, Gwanjae;Yang, Dongseok;Choi, Yujin;Lim, Kyoung Jae;Jang, Won Seok
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.98-106
    • /
    • 2019
  • The coefficient and exponent of the MUSLE(Modified Universal Soil Loss Equation) runoff factor in the SWAT(Soil and Water Assessment Tool) model are 11.8 and 0.56 respectively, which are equally applied to the estimation of soil erosion regardless of land use. they could derive overestimation or underestimation of soil erosion, which can cause problems in the selection of soil erosion-vulnerable area and evaluation of reduction management. However, there are no studies about the estimation of coefficients and exponent for the MUSLE runoff factor by land use and their applicability to the SWAT model. Thus, in order to predict soil erosion and sediment behavior accurately through SWAT model, it is necessary to estimate the coefficient and exponent of the MUSLE runoff factor by land use and evaluate its applicability. In this study, the coefficient and exponent of MUSLE runoff factor by land use were estimated for Gaa-cheon Watershed, and the differences in soil erosion and sediment from SWAT model were analyzed. The coefficient and exponent of runoff factor estimated by this study well reflected the characteristics of soil erosion in domestic highland watershed. Therefore, in order to apply the MUSLE which developed based on observed data of US agricultural basin to the domestic watershed, it is considered that a sufficient modification and supplementation process for the coefficient and exponent of the MUSLE runoff factor depending on land use is necessary. The results of this study can be used as a basic data for selecting soil erosion vulnerable area in the non-point source management areas and establishing and evaluating soil erosion reduction management.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Model Evaluation for Predicting the Full Bloom Date of Apples Based on Air Temperature Variations in South Korea's Major Production Regions (기온 변화에 따른 우리나라 사과 주산지 만개일 예측을 위한 모델 평가)

  • Jae Hoon Jeong;Jeom Hwa Han;Jung Gun Cho;Dong Yong Lee;Seul Ki Lee;Si Hyeong Jang;Suhyun Ryu
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.501-512
    • /
    • 2023
  • This study aimed to assess and determine the optimal model for predicting the full bloom date of 'Fuji' apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of 'Fuji' apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types (토지이용 유형별 공간특성을 고려한 ENVI-met 모델의 현장측정자료 기반의 검증)

  • Song, Bong-Geun;Park, Kyung-Hun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.156-172
    • /
    • 2014
  • This research measures and compares on-site net radiation energy, air temperature, wind speed, and surface temperature considering various spatial characteristics with a focus on land use types in urban areas in Changwon, Southern Gyeongsangnam-do, to analyze the accuracy of an ENVI-met model, which is an analysis program of microclimate. The on-site measurement was performed for three days in a mobile measurement: two days during the daytime and one day during the nighttime. The analysis using the ENVI-met model was also performed in the same time zone as the on-site measurement. The results indicated that the ENVI-met model showed higher net radiation than the on-site measurement by approximately $300Wm^{-2}$ during the daytime whereas the latter showed higher net radiation energy by approximately $200Wm^{-2}$ during the nighttime. The temperature was found to be much higher by approximately $2-6^{\circ}C$ in the on-site measurement during both the daytime and nighttime. The on-site measurement also showed higher surface temperature than the ENVI-met by approximately $7-13^{\circ}C$. In terms of the wind speed, there was a significant difference between the results of the ENVI-met model and on-site measurement. As for the correlation between the results of the ENVI-met model and on-site measurement, the temperature showed significantly high correlation whereas the correlations for the net radiation energy, surface temperature, and wind speed were very low. These results appear to be affected by excessive or under estimation of solar and terrestrial radiation and climatic conditions of the surrounding areas and characteristics of land cover. Hence, these factors should be considered when applying these findings in urban and environment planning for improving the microclimate in urban areas.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Detection of Irrigation Timing and the Mapping of Paddy Cover in Korea Using MODIS Images Data (MODIS 영상자료를 이용한 관개시기 탐지와 논 피복지도 제작)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Hong, Seok-Yeong;Kang, Sin-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Rice is one of the world's staple foods. Paddy rice fields have unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Information on the spatial distribution of paddy fields and the timing of irrigation are of importance to determine hydrological balance and efficiency of water resource management. In this paper, we detected the timing of irrigation and spatial distribution of paddy fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. The timing of irrigation was detected by the combined use of MODIS-based vegetation index and Land Surface Water Index (LSWI). The detected timing of irrigation showed good agreement with field observations from two flux sites in Korea and Japan. Based on the irrigation detection, a land cover map of paddy fields was generated with subsidiary information on seasonal patterns of MODIS enhanced vegetation index (EVI). When the MODISbased paddy field map was compared with a land cover map from the Ministry of Environment, Korea, it overestimated the regions with large paddies but underestimated those with small and fragmented paddies. Potential reasons for such spatial discrepancies may be attributed to coarse pixel resolution (500 m) of MODIS images, uncertainty in parameterization of threshold values for discarding forest and water pixels, and the application of LSWI threshold value developed for paddy fields in China. Nevertheless, this study showed that an improved utilization of seasonal patterns of MODIS vegetation and water-related indices could be applied in water resource management and enhanced estimation of evapotranspiration from paddy fields.