DOI QR코드

DOI QR Code

Development of a Biophysical Rice Yield Model Using All-weather Climate Data

MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발

  • Lee, Jihye (Department of Environmental Science, Kangwon National University) ;
  • Seo, Bumsuk (Department of Environmental Science, Kangwon National University) ;
  • Kang, Sinkyu (Department of Environmental Science, Kangwon National University)
  • 이지혜 (강원대학교 농업생명과학대학 환경융합학부) ;
  • 서범석 (강원대학교 농업생명과학대학 환경융합학부) ;
  • 강신규 (강원대학교 농업생명과학대학 환경융합학부)
  • Received : 2017.08.26
  • Accepted : 2017.09.25
  • Published : 2017.10.30

Abstract

With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

벼 등 식량작물 작황 추정의 경제, 산업적 중요성이 증가함에 따라 생물리 모형과 원격탐사 기반의 위성자료를 활용한 작황 추정 연구가 활발히 진행되고 있다. 이 연구에서는 위성 기반의 전천후 기상 입력자료(i.e. 기온, 대기 수증기압 포차, 일사량)와 빛 이용효율 모형을 이용한 생물리적 작물 성장 알고리즘을 벼에 적용하여 벼의 수확량을 수확 시기 보다 이르게(9월 중순 경) 추정하는 것을 목적으로 하였다. 2003년부터 2014년까지 12년간 경상권을 제외한 국내의 군 단위 행정구역별 벼 수확량을 추정하고, 이를 통계청에서 제공하는 현미 생산량 통계와 비교, 평가하였다. 벼 건중량, 수확지수 그리고 수확량 추정 결과는 각각 지도로 작성하여 공간적 분포 양상을 분석하였다. 연도별 전국 평균 추정 건중량은 평균오차(ME)가 0.56%, 평균절대오차(MAE)가 5.73%로 유의미한 결과를 보였다. 연도별 군 단위 건중량은 ME가 0.10%에서 2.00%, MAE가 2.10에서 11.62%의 범위를 보였다. 추정된 건중량은 강원지역에서 상대적으로 과대 모의하고, 충청 이남의 도심과 서해 인근지역에서 과소 모의하는 경향을 보였다. 건중량과 유관한 통계청 자료(i.e. 볏짚 생산량)와는 상반된 변동 양상을 보였는데, 이는 입력자료의 해상도(1 km)로 인한 픽셀 내 토지피복 이질성으로 인한 오차로 사료된다. 또한 생육기간 이후 수확시기의 생육상황을 고려하지 못하는 점을 향후 연구에서 개선할 필요가 있다.

Keywords

References

  1. Andersen, R., 2008. Modern methods for robust regression, series: Quantitative applications in the social sciences, Sage University Paper Series on Quantitative Applications in the Social Sciences 07-152. Beverly Hills, CA: Sage, USA.
  2. Back, N., W. Choi, J. Ko, J. Nam, H. Park, J. Choung, S. Kim, and K. Park, 2005. Proper Transplanting Time for Improving the Rice Quality at Reclaimed Saline Land in the Southwestern Area, Korean Journal of Crop Science, 50(spc1): 41-45 (in Korean with English abstract).
  3. Becker-Reshef, I., E. Vermote, M. Lindeman, and C. Justice, 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, Remote Sensing of Environment, 114(6): 1312-1323. https://doi.org/10.1016/j.rse.2010.01.010
  4. Bird, R. E. and R. L. Hulstrom, 1981. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces, Solar Energy Research Inst., Golden, USA.
  5. Choi, W., J. Nam, S. Kim, J. Lee, J. Kim, H. Park, N. Back, M. Choi, C. Kim, and K. Jung, 2005. Optimum transplanting date for production quality rice in Honam plain area, Korean Journal of Crop Science, 50(6): 435-441 (in Korean with English abstract).
  6. Diepen, C. v., J. Wolf, H. v. Keulen, and C. Rappoldt, 1989. WOFOST: a simulation model of crop production, Soil Use and Management, 5(1): 16-24. https://doi.org/10.1111/j.1475-2743.1989.tb00755.x
  7. Do, N., S. Kang, S. Myeong, T. Chun, J. Lee, and C. Lee, 2012. The estimation of gross primary productivity over North Korea using MODIS FPAR and WRF meteorological data, Korean Journal of Remote Sensing, 28(2): 215-226 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.2.215
  8. Doraiswamy, P. C., T. R. Sinclair, S. Hollinger, B. Akhmedov, A. Stern, and J. Prueger, 2005. Application of MODIS derived parameters for regional crop yield assessment, Remote Sensing of Environment, 97(2): 192-202. https://doi.org/10.1016/j.rse.2005.03.015
  9. Ewert, F., R. P. Rotter, M. Bindi, H. Webber, M. Trnka, K. C. Kersebaum, J. E. Olesen, M. K. van Ittersum, S. Janssen, and M. Rivington, 2015. Crop modelling for integrated assessment of risk to food production from climate change, Environmental Modelling & Software, 72(1): 287-303. https://doi.org/10.1016/j.envsoft.2014.12.003
  10. Fritsch, S., M. Machwitz, A. Ehammer, C. Conrad, and S. Dech, 2012. Validation of the collection 5 MODIS FPAR product in a heterogeneous agricultural landscape in arid Uzbekistan using multitemporal RapidEye imagery, International Journal of Remote Sensing, 33(21): 6818-6837. https://doi.org/10.1080/01431161.2012.692834
  11. Hong, S. Y., J. Hur, J. Ahn, J. Lee, B. Min, C. Lee, Y. Kim, K. D. Lee, S. Kim, and G. Y. Kim, 2012. Estimating rice yield using MODIS NDVI and meteorological data in Korea, Korean Journal of Remote Sensing, 28(5): 509-520 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.4
  12. Jang, K., S. Kang, H. Kim, and H. Kwon, 2009. Evaluation of shortwave irradiance and evapotranspiration derived from Moderate Resolution Imaging Spectroradiometer (MODIS), Asia-Pacific Journal of Atmospheric Sciences, 45(2): 233-246.
  13. Jang, K., S. Kang, Y. Lim, S. Jeong, J. Kim, J. S. Kimball, and S. Y. Hong, 2013. Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System, Journal of Geophysical Research: Atmospheres, 118(23): 12927-12940. https://doi.org/10.1002/2013JD020639
  14. Jang, K., S. Kang, J. S. Kimball, and S. Y. Hong, 2014a. Retrievals of all-weather daily air temperature using MODIS and AMSR-E data, Remote Sensing, 6(9): 8387-8404. https://doi.org/10.3390/rs6098387
  15. Jang, K., S. Kang, and S. Y. Hong, 2014b. Comparisons of Collection 5 and 6 Aqua MODIS07_L2 air and dew temperature products with groundbased observation dataset, Korean Journal of Remote Sensing, 30(5): 571-586 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.5.3
  16. Jeong, S., K. Jang, S. Hong, and S. Kang, 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data, Korean Journal of Agricultural and Forest Meteorology, 13(2): 69-78 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2011.13.2.069
  17. Joint-relevant authorities, 2011. Report on abnormal climate in 2011, Joint-relevant authorities, Korea.
  18. Jones, C. A., J. R. Kiniry, and P. Dyke, 1986. CERESMaize: A simulation model of maize growth and development, Texas A&M University Press, College Station, USA.
  19. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003. The DSSAT cropping system model, European Journal of Agronomy, 18(3): 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  20. Kang, S., Y. Kim, and Y. Kim, 2005. Errors of MODIS product of Gross Primary Production by using Data Assimilation Office Meteorological Data, Korean Journal of Agricultural and Forest meteorology, 7(2): 171-183 (in Korean with English abstract).
  21. Kastens, J. H., T. L. Kastens, D. L. Kastens, K. P. Price, E. A. Martinko, and R. Lee, 2005. Image masking for crop yield forecasting using AVHRR NDVI time series imagery, Remote Sensing of Environment, 99(3): 341-356. https://doi.org/10.1016/j.rse.2005.09.010
  22. Kiniry, J. R., B. Bean, Y. Xie, and P. Chen, 2004. Maize yield potential: critical processes and simulation modeling in a high-yielding environment, Agricultural Systems, 82(1): 45-56. https://doi.org/10.1016/j.agsy.2003.11.006
  23. Lee, J., S. Kang, K. Jang, J. Ko, and S. Hong, 2011. The evaluation of meteorological inputs retrieved from MODIS for estimation of gross primary productivity in the US corn belt region, Korean Journal of Remote Sensing, 27(4): 481-494 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.4.481
  24. Lee, J., S. Kang, K. Jang, and S. Y. Hong, 2016. A comparative study for reconstructing a highquality NDVI time series data derived from MODIS surface reflectance, Korean Journal of Remote Sensing, 31(2) (in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.2.9
  25. Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest, Science, 344(6183): 516-519. https://doi.org/10.1126/science.1251423
  26. McCree, K. and I. SETLIIK, 1970. An equation for the rate of respiration of white clover grown under controlled conditions, Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP Technical Meeting, Trebon, [Czechoslovakia], Center for Agricultural Publishing and Documentation, Wageningen, Netherland.
  27. Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111(4): 519-536. https://doi.org/10.1016/j.rse.2007.04.015
  28. Na, S. I., S. Y. Hong, Y. H. Kim, K. D. Lee, and S. Y. Jang, 2013. Prediction of rice yield in Korea using paddy rice NPP index-Application of MODIS data and CASA model, Korean Journal of Remote Sensing, 29(5): 461-476 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.5.2
  29. Running, S. and M. Zhao, 2015. User's guide daily GPP and annual NPP (MOD17A2/A3) products NASA earth observing system MODIS land algorithm, Version 3 for Collection, University of Montana, Missoula, USA.
  30. Stockle, C. O., M. Donatelli, and R. Nelson, 2003. CropSyst, a cropping systems simulation model, European Journal of Agronomy, 18(3): 289-307. https://doi.org/10.1016/S1161-0301(02)00109-0
  31. Tao, F., M. Yokozawa, Z. Zhang, Y. Xu, and Y. Hayashi, 2005. Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties, Ecological Modelling, 183(4): 385-396. https://doi.org/10.1016/j.ecolmodel.2004.08.023
  32. Yao, F., Y. Tang, P. Wang, and J. Zhang, 2015. Estimation of maize yield by using a processbased model and remote sensing data in the Northeast China Plain, Physics and Chemistry of the Earth, Parts A/B/C, 87: 142-152.