DOI QR코드

DOI QR Code

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic

북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구

  • Published : 2007.12.30

Abstract

Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

인공위성 수동 마이크로파(passive microwave, PM) 센서는 1970년대부터 극지 해빙의 면적비(sea ice concentration, SIC)와 표면 온도(ice temperature), 적설 두께(snow depth) 등을 관찰하고 있다. 특히 SIC는 기후 및 환경 변화 관찰을 위한 1차 요소로 고려되는 등 다양한 연구 분야에서 중요한 역할을 하기 때문에 PM SIC의 지속적인 검증과 보정이 필요하다. 본 연구에서는 2005년 7-8월 북극해의 가장 자리를 촬영한 KOMPSAT-1 EOC 영상으로부터 SIC를 계산하였고, 이를 NASA Team(NT) 알고리즘으로 계산된 SSM/I SIC와 비교하였다. EOC와 SSM/I NT SIC는 서로 다른 해상도와 관측 시각을 가지며 북극의 여름철 해빙 분포지역의 가장자리에서 해빙의 시공간적인 변화가 크기 때문에, 해빙의 유형을 고려하지 않았을 경우 0.574의 낮은 상관성을 보였다. 해빙의 유형에 따른 SSM/I NT SIC를 검증하기 위하여 EOC 영상으로부터 정착빙, 부빙, 유빙으로 해빙 형태를 분류하였고, 각 유형 별로 EOC와 SSM/I NT SIC를 비교하였다. 정착빙의 면적비는 EOC와 SSM/I NT SIC 사이에서 평균 오차가 0.38%로 매우 유사한 값을 나타냈다. 이는 정착빙의 시공간적인 변화가 작기 때문이며, 표면에 쌓인 눈은 건조한 상태일 것으로 추정되었다. 부빙의 경우 NT 알고리즘에서 면적비가 과소평가되는 빙맥(ice ridge)과 new ice가 많이 관찰되었으며, 이로 인해 SSM/I NT SIC는 EOC보다 평균 19.63%작은 값을 나타냈다. 유빙 지역에서 SSM/I NT SIC는 EOC보다 평균 20.17% 큰 값을 가진다. 유빙은 부빙의 가장자리와 가까운 지역에 위치하기 때문에 SSM/I의 넓은 IFOV 내에 비교적 높은 SIC를 가지는 부빙이 포함되어 오차를 일으킬 수 있다. 또한 유빙표면에 쌓인 수분 함량이 높은 눈의 영향으로 SSM/I NT SIC가 과대 측정되었을 것으로 사료된다.

Keywords

References

  1. 황종선, 이방용, 심재설, 홍성민, 윤호일, 권태영, 민경덕, 김정우, 2003. 마이크로웨이브 원격탐사를 이용한 남극 웨델해 해빙 관측, 자원환경지질학회지, 36(2): 141-148
  2. Allen, J. R. and D. G. Long, 2006. Microwave observations of daily Antarctic sea-ice edge expansion and contraction rates, IEEE Transactions on Geoscience and Remote Sensing Letters, 3(1): 54-58 https://doi.org/10.1109/LGRS.2005.856710
  3. Arrigo, K. R. and G. L. van Dijken, 2004. Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southern Beaufort Sea, Canadian Arctic, Geophysical Research Letters, 31(8): L08304
  4. Belchansky, G. I. and D. C. Douglas, 2000. Classification methods for monitoring Arctic sea ice using OKEAN passive/active twochannel microwave data, Remote Sensing of Environment, 73(3): 307-322 https://doi.org/10.1016/S0034-4257(00)00107-3
  5. Bjorgo, E., O. M. Johannessen, and M. W. Miles, 1997. Analysis of merged SMMR-SSM/I time series Arctic and Antarctic sea ice parameters 1978-1995, Geophysical Research Letters, 24(4): 413-416 https://doi.org/10.1029/96GL04021
  6. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets, Journal of Geophysical Research, 104(C7): 15803-15814 https://doi.org/10.1029/1999JC900081
  7. Cavalieri, D. J., J. P. Crawford, M. R. Drinkwater, D. T. Eppler, L. D. Farmer, R. R. Jents, and C. C. Wackerman, 1991. Aircraft active and passive microwave validations of sea ice concentrations from the DMSP SSM/I, Journal of Geophysical Research, 96(C12): 21989-22008 https://doi.org/10.1029/91JC02335
  8. Cavalieri, D. J., P. Gloersen, C. L. Parkinson, J. C. Comiso, and H. J. Zwally, 1997. Observed hemispheric asymmetry in global sea ice changes, Science, 278(5340): 1104-1106 https://doi.org/10.1126/science.278.5340.1104
  9. Cavalieri, D. J., P. Gloeresn, and W. J. Campbell, 1984. Determination sea ice parameters with the NIMBUS 7 SMMR, Journal of Geophysical Research, 89(D4): 5355-5369 https://doi.org/10.1029/JD089iD04p05355
  10. Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen, 1997. Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sensing of Environment, 60(3): 357-384 https://doi.org/10.1016/S0034-4257(96)00220-9
  11. Dethleff, D., P. Loewe, and E. Kleine, 1998. The Laptev Sea flaw lead-detailed investigation ice formation and export during 1991/1992 winter season, Cold Regions Science and Technology, 27(3): 225-243 https://doi.org/10.1016/S0165-232X(98)00005-6
  12. Derksen, C., and A. E. Walker, 2003. Identification of systematic bias in the cross-platform (SMMR and SSM/I) EASE-grid brightness temperature time series, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 910-915 https://doi.org/10.1109/TGRS.2003.812003
  13. Han, H. and H. Lee, 2007. Comparative study of sea ice concentration by using DMSP SSM/I, Aqua AMSR-E, and KOMPSAT-1 EOC, International Geoscience and Remote Sensing Symposium 2007, Barcelona, Spain, 23-27 July
  14. Hong, C., S. Hong, J. Hwang, D. Lee, and J. W. Kim, 2000. Distribution of altimetry-implied sea ice in the Weddell Sea, Antarctica: preliminary results, Proceedings of International Symposium on Remote Sensing 2000, Kyungju, 1-3 November
  15. Maksym, T. and M. O. Jeffries, 2000. A onedimensional percolation model of flooding and snow ice formation on Antarctic sea ice, Journal of Geophysical Research, 105(C11): 26313-26331 https://doi.org/10.1029/2000JC900130
  16. Markus, T. and D. J. Cavalieri, 2000. An enhancement NASA team sea ice algorithm, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1387-1398 https://doi.org/10.1109/36.843033
  17. Markus, T., D. J. Cavalieri, M. A. Tschudi, and A. Ivanoff, 2003. Comparison of aerial video and Landsat 7 data over ponded sea ice, Remote Sensing of Environment, 86(4): 458-469 https://doi.org/10.1016/S0034-4257(03)00124-X
  18. Markus, T. and S. T. Dokken, 2002. Evaluation of late summer passive microwave Arctic sea ice retrievals, IEEE Transactions on Geoscience and Remote Sensing, 40(2): 348-356 https://doi.org/10.1109/36.992795
  19. Mätzler, C. and A. Wiesmann, 1999. Extension of the microwave emission model of layered snowpacks to coarse-grained snow, Remote Sensing of Environment, 70(3): 317-325 https://doi.org/10.1016/S0034-4257(99)00047-4
  20. Meier, W. N., 2005. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1324-1337 https://doi.org/10.1109/TGRS.2005.846151
  21. Parkinson, C. L., D. Rind, R. J. Healy, and D. G. Martinson, 2001. The impact of sea ice concentration accuracies on climate model simulations with the GISS GCM, Journal of Climate, 14(12): 2606-2623 https://doi.org/10.1175/1520-0442(2001)014<2606:TIOSIC>2.0.CO;2
  22. Partington, K. C., 2000. A data fusion algorithm for mapping sea-ice concentrations from Special Sensor Microwave/Imager data, IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1947-1958 https://doi.org/10.1109/36.851776
  23. Piwowar, J. M., D. R. Peddle, and E. F. Ledrew, 1998. Temporal mixture analysis of arctic sea ice imagery: A new approach of monitoring environmental change, Remote Sensing of Environment, 63(3): 195-207 https://doi.org/10.1016/S0034-4257(97)00105-3
  24. Pullianien, J. T., J. Grandell, and M. T. Hallikainen, 1999. HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE transactions on Geoscience and Remote Sensing, 37(3): 1378-1390 https://doi.org/10.1109/36.763302
  25. Serreze, M. C., J. A. Maslanik, T. A. Scambos, F. Fetterer, J. Stroeve, K. Knowles, C. Fowler, S. Drobot, R. G. Barry, and T. M. Haran, 2003. A record minimum arctic sea ice extent and area in 2002, Geophysical Research Letters, 30(3): 10(1)-10(4), doi: 10.1029/2002GL016406
  26. Shirasawa, K., M. Leppäranta, T. Saloranta, T. Kawamura, A. Polomoshnov, and G. Surkov, 2005. The thickness of coastal fast ice in the Sea of Okhotsk, Cold Regions Science and Technology, 42(1): 25-40 https://doi.org/10.1016/j.coldregions.2004.11.003
  27. Stroeve, J., J. Maslanik, and L. Xiaoming, 1998. An intercomparison of DMSP F11- and F13-derived sea ice products, Remote Sensing of Environment, 64(2): 132-152 https://doi.org/10.1016/S0034-4257(97)00174-0
  28. Thomas, D. N. and G. S. Dieckmann, 2003. Sea Ice: an introduction to its physics, chemistry, biology, and geology, Blackwell Science, Malden, MA, USA
  29. Vinnikov, K. Y., A. Robock, R. J. Stouffer, J. E. Walsh, C. L. Parkinson, D. J. Cavalieri, J. F. B. Mitchell, D. Garrett, and V. F. Zakharov, 1999. Global warming and northern hemisphere sea ice extent, Science, 286(5446): 1934-1937 https://doi.org/10.1126/science.286.5446.1934
  30. Worby, A. P. and J. C. Comiso, 2004. Studies of the Antarctic sea ice edge and ice extent from satellite and ship observations, Remote Sensing of Environment, 92(1): 98-111 https://doi.org/10.1016/j.rse.2004.05.007
  31. World Meteorological Organization, 1970. WMO-Sea ice nomenclature, 1970 ed., Secretariat of the World Meteorological Organization, Geneva
  32. Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen, 2002. Variability of the Antarctic sea ice 1979-1998, Journal of Geophysical Research, 107(C5): 1029-1047 https://doi.org/10.1029/2001JA900104