• Title/Summary/Keyword: 공동대사

Search Result 37, Processing Time 0.021 seconds

Cometabolism of Trichloroethylene by a Phenol-Degrading Bacterium, Pseudomonae sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J에 의한 Trichloroethylene의 공동대사)

  • Kim, Ho-Seong;Park, Geun-Tae;Son, Hong-Ju;Park, Seong-Hun;Lee, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.359-364
    • /
    • 2001
  • Pseudomanas sp. EL-04J was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). After precultivation in the mineral salts medium containing phenol as a sole carbon source, Pseudomonas EL-04J degraded 90% of TCE $25 \mu\textrm{M}$ within 20 hours. Thus, phenol-induced Pseudomonas sp. EL-04J cells can bdegrade TCE. Followsing a transient lag period, Pseudomonas sp. EL-04J cells degraded TCE at concentrations of at least $250 \mu\textrm{M}$ with no apparent retardation in rate, but the transformance capacity of such cells was limited and depended on the cell concentration. The degradation rate of TCE followed the Michaelis-Menten kinetic model. The maximum degradation ratio ($V_{max}$) and saturation constant ($K_{m}$) were $7nmo {\ell}/min{\cdot}mg$ cell protein and $11 \mu\textrm{M}$, respectively. Cometabolism of TCE by phenol fed experiment was evaluated in $50m {\ell}$ serum vial that contained $10m {\ell}$ of meneral sals medium supplemented with $10 \mu\textrm{M}$ TCE degradation was inhibited in the initial period of 1 mM phenol addition, but after that time Pseudomonas sp. EL-04J cells degraded TCE and showed cell growth.

  • PDF

Confirmation of Trichloroethylene-Degrading Enzyme from a Phenol-Degrading Bacterium, Pseudomonas sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J로부터 Trichloroethylene 분해효소의 확인)

  • Park, Geun-Tae;Kim, Ho-Sung;Son, Hong-Ju;Lee, Gun;Park, Sung-Hoon;Lee, Sang-Jun
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.561-565
    • /
    • 2002
  • Pseudomonas sp. EL-041 was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). In this study, we report the identification of trichloroethylene- degrading enzyme in Pseudomonas sp. EL-041 by the investigation of enzyme activity and DNA sequencing of specific phenol oxygenase gene. As the results of experiment, trichloroethylene-degrading enzyme in Pseudomonas sp. EL-041 was monooxygenase and suspected to phenol hydroxylase.

전기화학식 이산화탄소 센서

  • Park, Jong-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • 이산화탄소는 인체에 무해하지만 인간의 신진대사와 깊은 관련이 있기 때문에 인간의 정신적 육체적 행동을 제어하는 분야에 많이 응용되고 있다. 따라서 지능형 빌딩이나 고급 공동주택 등의 실내공기를 제어하는 시스템에 적용되어 효율적으로 환기시스템을 운용하는데 사용되어져 왔다. 앞으로 이는 에너지절감과 연동되어 자동차나 가전제품 등 앞으로 점점 밀폐되어가는 구조에 사용이 늘어날 것으로 전망된다. 그러나 종래는 이산화탄소가 특정파장(4.2 um)의 적외선을 흡수하는 성질을 이용하여 Lambert law에 의해 이산화탄소의 양을 측정하였다. 따라서 가격이나 크기가 비교적 경제적이지 못한 측면이 많았다. 이와 반대로 전기화학적인 방식은 가격이나 크기의 측면에서 장점이 있었으나, 초기동작시간이나 안정성, 수명 등에서 상용화되기에는 아직 소비자가 이해하기 힘든면이 많았다. 이에 고체전해질을 이용하여 수명이나 초기시간 및 안정성을 획기적으로 개선하여 상용화가 가능하도록 만든 이산화탄소 센서를 소개하고자 한다. 이 센서는 전자회로와 결합되어 사용이 편리하도록 모듈화 하였고 이 모듈을 사용하여 "airwatch"라는 응용제품으로 판매되고 있다.

  • PDF

성인병 뉴스 제306호

  • The Korea Association of Chronic Disease
    • The Korean Chronic Disease News
    • /
    • no.306
    • /
    • pp.1-30
    • /
    • 2006
  • 안산시 단원 보건소 박영숙 소장/노인인구 급증 사회적 부담 증폭/“병원 자본조달?투자활성화 필요”/차관지원의료기관 연체금 감면 지원/의료기관평가, 관민공동참여를/“환자급식 제공실태 일제 점검”/인천시, 만성질환 관리 위해 나섰다/통합건강증진 프로그램 시범 운영/약가 포지티브 시스템 강행/Metformin은 당뇨병의 모든 키워드 함축한 약제/Metformin, 혈당개선.심혈관질환 예방“효과”/대사증후군 환자 인슐린저항성 개선...당뇨병 예방/“내당능장애 환자, 당뇨병 걸릴 위험 높다”/“Metformin, 저혈당 일으키지 않는 대단히 좋은 약제”/국내연구서 metformin 복용 인슐린 투여량 감소 입증/“Novamet GR, 폴리머 통해 약물 분비 조절한다”/새벽녘에 생기는 공복혈당 적절한 억제 기대/의료법인 단계적 수익사업 허용/고지 혈증/건강검진수가도 종별가산율 적용돼야/

  • PDF

Regulation of Cell Growth and Tylosin Biosynthesis through Flux Control of Metabolic Intermediate in Streptomyces fradiae (Streptomyces fradiae에서 대사중간산물 이용속도에 의한 균체 성장과 tylosin 생합성의 조절)

  • 강현아;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.189-197
    • /
    • 1987
  • The aim of the present study was to investigate the effect of glutamate on the biosynthesis of tylosin. Activities of enzymes involved in the metabolic pathway of glutamate to form tylactone, an essential precursor of tylosin, were determined using Streptomyces fradiae grown at different concentration of glutamate. As results, it was found that cell growth and tylactone formation was controlled by the metabolic flux of oxaloacetate. It was clear that cell growth was favored by the activities of citrate synthase and aspartate aminotransferase, while the tylactone synthesis was stimulated by the activity of methylmalonyl-CoA carboxyltransferase. Therefore it was concluded that channelling of oxaloacetate was a point for favoring either cell growth or tylosin biosynthesis.

  • PDF

Effects of Growth Substrates on Cometabolic Biodegradation of Trichloroethylene by Burkholderia cepacia G4 (Burkholderia cepacia G4에 의한 트리클로로에틸렌의 공동대사적 분해에 미치는 성장기질의 영향)

  • 예병대;박성훈;이은열
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.474-481
    • /
    • 2000
  • The effects of growth substrates such as toluene and phenol on cometabolic biodegradation of trichloroethylene (TCE) by Burkholderia cepacia G4 were investigated. The dual effects of primary substrate on TCE biodegradation, stimulatory effects of toluene and phenol at low concentrations (0.5∼2 ppm & 0.1∼0.5 ppm, respectively) and a competitive inhibition at high concentration, were observed in batch experiments. These stimulatory effects of toluene and phenol were found to be due to the increments in the amount of reducing power like NADH which could be generated during the assimilation of toluene and phenol as the carbon and energy source. The efficiency of TCE biodegradation in trickling biofilm reactor (TBR) could be also enhanced up to the TCE removal efficiency of 58.1% by the supply of appropriate amounts of phenol (0.94∼4.7 ppm).

  • PDF

Comparison of the Effects of Cyclodextrin-Naringin Inclusion Complex with Naringin on Lipid Metabolism in Mice Fed a High-Fat Diet (고지방식이를 섭취한 마우스에서 나린진과 나린진-사이클로텍스트린 포접화합물의 지질대사에 대한 영향 비교)

  • Jeon, Seon-Min;Choi, Myung-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.20-29
    • /
    • 2010
  • Naringin has antioxidant and antihyperlipidemic properties, however, phenolic compounds including naringin are unstable in the presence of light, heat and oxygen. Beta-cyclodextrin ($\beta$-CD) is a cyclic heptamer composed of seven glucose units that enhances the stability and solubility of molecules through the formation of inclusion complexes. This study was conducted out to compare the effects of CD-naringin (CD-N) inclusion complexes with naringin on lipid metabolism in high fat-fed animals. Male C57BL/6 mice were fed either CD-N (0.048%, w/w) or naringin (N, 0.02%, w/w) in a 20% high-fat (HFC, 15% lard, 5% corn oil, w/w) diet for 10 weeks. Orlistat (Xenical, 0.01%, w/w) was used as a positive control (PC). There were no differences in body weight, food intake, liver and heart weights, plasma triglyceride(TG), leptin, adiponectin, resistin, IL-$1{\beta}$ and IL-6 concentrations, and hepatic $\beta$-oxidation, carnitine palmitoyl transferase(CPT), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme activities between the HFC and CD-N groups or between the HFC and N groups. However, both CD-naringin and naringin supplementation les to a significant reduction in the epididymal and perirenal white adipose tissue weights, plasma free fatty acid, insulin and blood glucose concentrations, hepatic cholesterol and TG contents and hepatic fatty acid synthase (FAS), phosphatidate phosphohydrolase (PAP) and HMG-CoA reductase activities compared to the HFC group. The plasma HDL-cholesterol concentration was significantly higher in CD-N and N groups than in HF and PC groups. These results indicate that both CD-naringin and naringin supplementation effectively improved plasma and hepatic lipid metabolism without differences between CD-N and naringin groups.

Influence of a Variety of Second Carbon Substrates on the Bacterial Consortium Differentially Degrading Cis- and Trans-1,3-Dichloropropene (1,3-D) (상업용 훈증제인 Cis-와 Trans-1,3-Dichloropropene(1,3-D)을 차별적으로 분해하는 Bacterial Consortium에 영향을 주는 다양한 이차 탄소원들의 효과)

  • Chung, Keun-Yook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1243-1252
    • /
    • 2000
  • The differential enhanced degradation of cis- and trans-1,3-D was observed in the previous two studies performed by several researchers. This study was initiated to investigate the involvement of microorganisms in the differential enhanced degradation of the chemicals. As expected, microorganisms were responsible for the enhanced degradation. A mixed bacterial culture capable of degrading 1,3-D was isolated from an enhanced soil sample collected from a site treated with 1,3-D. Similar to the enhanced soil, the mixed culture degraded trans-1,3-D faster than cis-1,3-D. This mixed culture could not utilize cis- and trans-1,3-D as a sole source of carbon for growth. Rather, a variety of second substrates were evaluated to stimulate the differential enhanced degradation of the two isomers. As a result, the mixed culture degraded cis- and trans-1,3-D only in the presence of a suitable second substrate. Therefore, it appeared that the degradation of cis- and trans-1,3-D was a cometabolic process. Second substrates that had the capacity to stimulate the degradation included soil leachate, tryptone, tryptophan, and alanine. Other substrates tested. including soil extract. glucose, yeast extract and indole, failed to stimulate the degradation of the two isomers. The mixed culture was composed of four morphologically distinctive colonies on L-agar plates.

  • PDF

BIODEGRADATION PATHWAYS OF TRICHLOROETHYLENE (TCE) AND METHYL BROMIDE (MeBr)

  • Chung, Keun-Yook
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • 트리클로로에틸렌 (trichloroethylene, TCE)는 오랜 시간동안 자연환경에서 잔류할 뿐만 아니라 TCE보다 더욱 더 독성이 강한 중간 생성물들을 만들기 때문에 미국과 대부분의 전세계 국가들로부터 주요 1차 환경오염물질로 분류되었다. 그러한 독성물질들은 혐기성 상태에서는 다이클로로 에틸렌(dichloroethylene, DCE)과 바이닐 클로라이드 (vinyl chloride, VC)와 같은 독성물질들이 생성되고 호기성 상태에서는 TCE epoxide계통의 물질들이 생성된다. 또한 훈증제인 메틸 브로마이드 (methyl bromide)는 대기의 오존층을 파괴하는 것으로 알려져 있고, 2001년경에 미국환경보호청 (USEPA)에 의해 사용이 금지될 것이다. TCE는 혐기성 조건하에서 연속적으로 탈염소화되고, 이어서 호기성 조건하에서 완전 산화될 수 있다. 그리하여 연속적인 혐기성 및 호기성 조건하에서 궁극적으로 TCE의 완전분해를 이루게된다. 메틸브로마이드는 화학적으로 가수분해되어 메틸 알콜 (methyl alcohol)로 되거나 유기물에 강하게 결합 (bound)된다. 또한 그것은 생물학적으로 포름알데하이드 (formaldehyde)로 산화되거나 메틸알콜로 가수분해된다. 수많은 연구자들에 의해 행해진 연구들은 TCE와 MeBr은 메탄 혹은 암모니아 산화 세균에 의한 공동대사과정 (cometabolism)을 통해 분해가 증진될 수 있다는 것을 보여주었다. 두 부류의 세균들이 두 화합물들을 분해시킬 수 있는 monooxygenase를 생산한다는 것은 잘 알려져 있다. 이 연구 논문에서 TCE와 MeBr의 생분해와 관련된 가장 최근의 연구논문들로부터 나온 핵심 연구결과들이 요약 검토된다. TCE와 MeBr로 오염된 현장을 정화하기 위해 이러한 기초연구결과들을 토대로 더욱 더 많은 연구가 필요 할 것으로 사료된다.

  • PDF

A Study on the TCE/PCE Removal Using Biofiltration and the Microbial Communities Variation Using DGGE Method (생물 여과를 이용한 TCE/PCE제거 및 DGGE법을 이용한 관련미생물 군집변화에 관한 연구)

  • Kim, Eung-In;Park, Ok-Hyun;Jung, In-Gyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1161-1169
    • /
    • 2008
  • The removals of TCE and PCE vapor with or without a supply of toluene as a primary substrate were compared in a biofiltration process, and the variations of microbial communities associated with the removal were also investigated. As a result of investigations on the removals of TCE/PCE in a biofilter B within which TCE/PCE-acclimated sludge was attached on the surface of media without a supply of primary substrate, and those in another biofilter A where toluene-acclimated sludge was attached with a supply of toluene as a primary substrate, followings were found: (i) parts of microbes responsible to the decomposition of toluene vapor participate in the removal of chlorinated VOCs such as TCE and PCE, and (ii) effective biological removals of TCE and PCE vapor do not necessarily need cometabolism. Sequencing of 16S rDNA obtained from the band profile of DGGE (Denaturating Gradient Gel Electrophoresis), it was confirmed that: (i) uncultured alpha proteobacterium, uncultured Desulfitobacterium, uncultured Rhodobacteraceae bacterium, Cupriavidus necator, and Pseudomonas putida were found to be toluene-decomposing microbes, (ii) alpha proteobacterium HTCC396 is a TCE-removing microbe, (iii) Desulfitobacterium sp. is a PCE-decomposing microbe, and (iv) particularly, uncultured Desulfitobacterium sp. is probably a microbe decomposable not only toluene but also various chlorinated VOC vapor including TCE and PCE.