BIODEGRADATION PATHWAYS OF TRICHLOROETHYLENE (TCE) AND METHYL BROMIDE (MeBr)

  • Chung, Keun-Yook (Department of Environmental Engineering, Kyongju University)
  • Published : 2001.09.01

Abstract

트리클로로에틸렌 (trichloroethylene, TCE)는 오랜 시간동안 자연환경에서 잔류할 뿐만 아니라 TCE보다 더욱 더 독성이 강한 중간 생성물들을 만들기 때문에 미국과 대부분의 전세계 국가들로부터 주요 1차 환경오염물질로 분류되었다. 그러한 독성물질들은 혐기성 상태에서는 다이클로로 에틸렌(dichloroethylene, DCE)과 바이닐 클로라이드 (vinyl chloride, VC)와 같은 독성물질들이 생성되고 호기성 상태에서는 TCE epoxide계통의 물질들이 생성된다. 또한 훈증제인 메틸 브로마이드 (methyl bromide)는 대기의 오존층을 파괴하는 것으로 알려져 있고, 2001년경에 미국환경보호청 (USEPA)에 의해 사용이 금지될 것이다. TCE는 혐기성 조건하에서 연속적으로 탈염소화되고, 이어서 호기성 조건하에서 완전 산화될 수 있다. 그리하여 연속적인 혐기성 및 호기성 조건하에서 궁극적으로 TCE의 완전분해를 이루게된다. 메틸브로마이드는 화학적으로 가수분해되어 메틸 알콜 (methyl alcohol)로 되거나 유기물에 강하게 결합 (bound)된다. 또한 그것은 생물학적으로 포름알데하이드 (formaldehyde)로 산화되거나 메틸알콜로 가수분해된다. 수많은 연구자들에 의해 행해진 연구들은 TCE와 MeBr은 메탄 혹은 암모니아 산화 세균에 의한 공동대사과정 (cometabolism)을 통해 분해가 증진될 수 있다는 것을 보여주었다. 두 부류의 세균들이 두 화합물들을 분해시킬 수 있는 monooxygenase를 생산한다는 것은 잘 알려져 있다. 이 연구 논문에서 TCE와 MeBr의 생분해와 관련된 가장 최근의 연구논문들로부터 나온 핵심 연구결과들이 요약 검토된다. TCE와 MeBr로 오염된 현장을 정화하기 위해 이러한 기초연구결과들을 토대로 더욱 더 많은 연구가 필요 할 것으로 사료된다.

Keywords

References

  1. Microbiol. Rev. v.55 Biodegradation of halogenated organic compounds Chaudhry, G.R.;Chapalamadugu, S.
  2. Microbiol. Rev. v.58 Bacterial dehalogenase : Biochemistry, genetics, and biotechonological application. Fetzner, S.;Lingens, F.
  3. Microbial degradation of halogenated aromatic compounds Reineke, W.;D.T. Gibson(ed.)
  4. Bioremediation Baker, K.H.;Herson, D.S.
  5. Bull. Environ. Contam. Toxicol v.19 Tetrachloroethylene in ground and drinking waters Geiger, W.;Molner Kubica, E.
  6. J. Am. Water Works Assoc. v.73 Trichloroethylene and methyl-chloroform in groundwater : A problem assessment Petura, J.C.
  7. Ann. Rev. Microbiol. v.45 Biochemical diversity of trichloroethylene metabolism Ensley, B.D.
  8. J. Am. Water Works Assoc. v.74 Treatment of drinking water containing trichloroethylene and related industrial solvents Love, O.T.Jr.;Diler, R.G.
  9. Document NPL-U3-6-3 Substances found at proposed and final NPL sites through update number three U.S. Environmental Protection Agency
  10. J. Am. Water Works Assoc. v.76 The groundwater supply survey Westrick, J.J.;Mello, J.W.;Thomas, R.F.
  11. Environ. Sci. Res. v.25 Mutagenic and oncogenic effects of chloromethanes, chloroethanes, and halogenated nanlogs of vinyl chloride. Infante, P.F.;Tsongas, T.A.
  12. Appl. Environ. Microbiol. v.49 Biotransformation of tetrachlorothylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Vogel, T.M.;McCarty, P.L.
  13. Appl. Environ. Microbiol. v.54 Trichloroethylene biodegradation by a methaneoxidzing acterioum. Little, C.D.;Palumbo, A.V.;Herbes, S.E.;Lidstrom, M.E.;Tyndall, R.L.;Gilmer, P.J.
  14. Proceedings of the 4th International Symposium. Regulation and control of methane monooxygenase. In Microbial Growth on Cl Compounds Dalton, H.;Prior, S.D.;Leak, D.J.;Stanley, S.H.;R.L. Crawford;R.S. Hanson(eds.)
  15. Biodetradation v.2 Trichloroethylene oxidation by the membraneassociated methane monooxygenase in type Ⅰ, type Ⅱ, type X methanotrophs DiSpirito, A.A.;Gulledge, J.;Shiemke, A.K.;Murrell, J.C.;Lidstrom, M.E.;Krema, C.L.
  16. Methane oxidation by methanotrophs : Physiological and mechanistic implications Dalton, H.;J.C. Murrel;H. Dalton(eds.)
  17. Nature v.286 New findings in methane-utilizig bacteria highlight their importance in the biosphere and their commercial potential Higgins, I.J.;Best, D.J.;Hammond, R.C.
  18. Appl. Environ. Microbiol. v.49 Biotransformation of trichloroethylene in soil Wilson, J.T.;Wilson, B.H.
  19. Appl. Environ. Microbiol. v.51 Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture Fogel, M.M.;Taddeo, A.R.;Fogel, S.
  20. Biochem. Biophys. Res. Commun. v.159 Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea Arciero, D.;Vannelli, T.;Logan, M.;Hooper, A.B.
  21. Biochem. J. v.212 Methane oxidation by Nitrosomonas europaea Hyman, M.R.;Wood, P.M.
  22. J. Gen. Microbiol. v.33 Methanol and formaldehyde by an autotrophic nitrifying bacterium Vosey, P.A.;Wood, P.M.
  23. Arch. Microbiol. v.137 Ethylene oxidation by Nitrosomonas europaea. Hyman, M.R.;Wood, P.M.
  24. In Diversity of Bacterial Systems v.2 Respiration in the ammonia oxidizing chemotrophic bactia Drozd, J.W.;C.J. Knowles(ed.)
  25. Arch. Microbiol. v.143 A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for further oxidation of phenol to hydroxyquinone Hyman, M.R.;Sansome Smith, A.W.;Shears, J.H.;Wood, P.M.
  26. Can. j. Microbiol. v.29 Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Jones, R.D.;Morita, R.Y.
  27. Suppl. J. Nematol. v.26 The challenge of research and extension to define and implement alternatives to methyl bromide Noling, J.W.;Becker, J.O.
  28. Environ. Sci. Tech. v.31 Stimulation of microbial degradation of methyl bromide in soil during oxidation of an ammonia fertilizer by nitrifiers Ou, L.T.;Joy, P.J.;Thomas, J.E.;Hornsby, A.G.
  29. USDA Economic Researcg Service, Agricultural Economic Report No. 677 Economic effects of banning methyl bromide for soil fumigation Ferguson, W.;Padula, A.
  30. United Nations Environmental Program Methyl bromide : Its atmospheric science, technology, and economics Watson, R.T.;Albritton, D.L.;Anderson, S.O.;Lee Bapty, S.
  31. Nature(London) v.344 Strarospheric ozone depletion and future levels of atmospheric chlorine and bromine. Prater, M.J.;Watson, R.T.
  32. Geophys. Res. Lett. v.21 The potential role of the ocean in regulating atmospheric CH₃Br. Butler, J.H.
  33. J. Geophys. Res. v.98 Atmospheric methyl bromide : Trends and global masss balance. Khalil, M.A.K.;Rasmussen, R.A.;Gunawardena, R.
  34. Res. Lett. v.20 Nucleophilic substitution rates and solubilities for methyl galides in seawater Elliott, S.;Rowland, F.S.
  35. pH. and light. Pestic. Sci. v.25 The degradation of methyl bromide in some natural fresh waters. Influence of temperature Gentile, I.A.;Ferraris, L.;Crespi, S.
  36. Chemosphere v.29 Effect of soil properties on degradation and sorption of methyl bromide in soil. Gan, J.;Yates, S.R.;Spencer, W.E.;Ernst, F.E.;Yates, M.V.
  37. Appl. Environ. Microbiol. v.60 Degradation of methyl bromide by methanotrophic bacteria in cell suspension and soils Oremland, R.S.;Miller, L.G.;Culbertson, C.W.;Connell, T.L.;Jahnke, L.
  38. FEMS Microbiol. Lett. v.9 Evaluation of bromoethane as a suitable analogue in methane idation studies Meyers, A.J.
  39. Appl. Environ. Microbiol. v.56 Biodegradation of halogenated hydrocarbon fumigants by nitrifying bacteria Rasche, M.E.;Hyman, M.R.;Arp, D.J.