• Title/Summary/Keyword: 공기의 흡입

Search Result 390, Processing Time 0.026 seconds

Effect of Inlet Air Temperature and Atomizing Pressure on Fluidized Bed Coating Efficiency of Broken Peanut (흡입공기온도와 분무압력이 분쇄땅콩의 유동층 코팅효율에 미치는 영향)

  • Kang, Hyun-Ah;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.924-926
    • /
    • 2002
  • The effects of inlet air temperature and atomizing pressure on the coating efficiency were evaluated using peanuts. Broken peanut pieces were coated with dextrin and sodium caseinate solution by a fluidized bed coater. The coating efficiency was significantly influenced by inlet air temperature and atomizing pressure, with the optimal efficiency achieved at $70^{\circ}C$ and 3 bar, respectively. The coating material consisting of dextrin and sodium caseinate could be used for preventing rancidity of broken peanut.

Review on Airbreathing Propulsion Technology for Missile Application (유도탄용 공기흡입식 추진기관 기술분석)

  • 임진식;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.87-99
    • /
    • 2001
  • Technical status and prospect of the subsonic airbreathing propulsion system composed of jet engine fuel feeding system and air intake for missile application is described herein, including analysis of some present airbreathing missiles. Comprehension on this can be applicable both to blow deeply about the same type missiles and to get some basic idea of unmanned air vehicle's and light aircraft's propulsion system.

  • PDF

Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials (원자력시설의 사고시 가축의 공기 흡입과 토양 섭취가 육류의 방사능 요염에 미치는 영향)

  • 황원태;김은한;서경석;정효준;한문희
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide $^{l37}Cs$ than a short-lived radionuclide $^{131}I$ (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  • PDF

Improvement of Compression Ignition for Gasoline Fuel Injected in the Diesel Engine (디젤기관에 분사되는 가솔린연료의 압축착화성 향상)

  • Choi, Yoon-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this study, it made to run conventional single direct injection(DI) diesel engine, which adapted bulk combustion system not following spark ignition system without any ignition apparatus. It was heated and controlled inlet-air into conventional single DI diesel engine. The maximum value of brake thermal efficiency was at 35 region of air-fuel ratio. On the contrary, when the region of air-fuel ratio leaner than 35, brake thermal efficiency was decreased suddenly. And brake thermal efficiency was increased as much as inlet-air heating temperature increased. So, when air-fuel ratio was decreased and inlet-air heating temperature was higher, the engine was in optimal operation condition.

Numerical Simulation of Axi-Symmetric Supersonic Intake Flow Operating on Design & Off-Design Conditions (축대칭 초음속 공기흡입구의 설계점/비설계점 유동 연구)

  • 김성돈;정인석;최정열
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.20-20
    • /
    • 2000
  • 2개의 경사 충격파와 하나의 수직 충격파로 초음속 유동을 압축하는 초음속 공기 흡입구의 수치적 연구를 수행하였다. 지배방정식으로는 Navier-Stokes방정식을 사용하였고 난류모델로는 SST 모델을 사용하였다. 지배방정식의 점성항 계산에는 중심차분법을 사용하였고 대류항 계산에는 풍상차분법인 Roe의 FDS기법을 MUSCL기법과 결합하여 이용하였다. 유한 체적법을 이용하여 차분된 방정식은 LU분할 기법을 이용한 완전 내재적 방법으로 2차 정확도 시간 적분으로 비정상 과정의 연구를 수행하였다. 흡입구 배압을 정해주어야 하는 어려움을 해결하기 위해 흡입구 후면에 노즐을 달고 노즐의 면적을 조절하여 배압이 형성되도록 하였다.(중략)

  • PDF

Study on the Effect of Total Pressure Loss by Bell Mouth Inlet Screen (벨 마우스 흡입구 보호망에 의한 전압력 손실영향 연구)

  • Lee, Changwook;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • Bell mouth inlet is applied in various industries due to the advantage of little pressure loss and accurate flow measurement. In this study, the configuration of the bell mouth intake is designed in a long radius shape, and a suitable grid size was selected to minimize the pressure drop and to prevent the engine damage by foreign objects at outdoor operating conditions. It was able to present a modified pressure drop coefficient equation from two data obtained from the computational simulation and experimental results for the total pressure loss by inlet screen installation.

A noise reduction structure for vacuum cleaner (진공청소기의 소음저감구조)

  • 박성수;황진성;손진승;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.73-79
    • /
    • 1994
  • (1) 진공청소기의 소음은 팬모타의 회전에 기인하는 유체소음과 진동소음이 주류를 이루며, 여기에 공기의 흡입과 배출에 따른 유체소음등이 복합되어 나타난다. (2) 진공청소기의 소음특성은 각 소음원들의 특성에 따라 주파수대역을 구분할 수 있으며, 기계적 진동음인 500Hz부근에서 peak를 보인다. (3) 소음의 저감을 위하여는 기존에 정립되어 있는 흡음, 차음, 감쇠, 방진, 유압유속감소 등의 기술을 종합적으로 활용하여 제한된 공간내에서 효과를 극대화할 수 있는 구조개발이 필요하며 본 연구에 적용하였다. (4) 본 연구의 '정음유로구조'는 차음효과, 유로길이 증가에 의한 감쇠효과, 흡음효과를 극대화할 수 있는 구조이다. (5) 팬모타의 진동모드는 회전축을 중심으로 원운동을 하며, 진동량은 흡입구와 뒷쪽 베어링부위가 가장 작으므로 회전축에 가까운 곳을 지지하는 것이 방진에 유리하다. (6) 본 구조에서 사용된 케이싱은 484Hz의 고유진동수 성분을 가지며 이는 모타와 공진할 우려가 있다. 이에 공진주파수 성분의 진동량이 가장 작은 전면과 후면의 중앙부를 지지하여 진동을 줄일 수 있었다. (7) 본체소음의 전반적인 저감에 따라 흡입구 등에서 발생하는 공기마찰소음의 영향이 상대적으로 커지며, 따라서 흡입구의 유선형 설계 및 누설소음의 흡음, 차폐 등의 역할이 중요한 관리 요소로 된다.

  • PDF

The Study of Aerodynamic Characteristics of Ram-jet with Different Intake (서로 다른 램제트 흡입구에 따른 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • The SFRJ(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (center-body & pitot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}$ and $4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. Under mach 3.0, the center-body showed twice higher total pressure recovering ratio than the pitot type. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

Effect of the Suction Performance by the Air-Curtain Blowing around a Suction Duct (흡입관 주위에 형성된 공기차단막이 흡입성능에 미치는 영향)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.25-32
    • /
    • 2009
  • A study is conducted to improve the suction performance on suction devices which are used to remove polluted air generated by welding or machining process in a spacious working place of industry. Air-curtain is applied around the inlet of suction duct to interrupt the inflow of fresh air from the downstream region where is located opposite to the polluted air source. Two different air-curtain devices, such as a $45^{\circ}$ backward and a fully backward, are adopted. Suction region is experimentally investigated by measuring the suction velocities using a hot-wire anemometer. Contours of the suction velocity are compared with the computed results. The suction condition is selected to 110,000 Reynolds number which is widely used on typical suction devices, and a width of blowing passage for creating the air-curtain is chosen to 9.38% of the suction duct diameter. The experimental results show that the suction performance obtained with the $45^{\circ}$ backward air-curtain was better than that obtained with the fully backward air-curtain. On the suction duct using the $45^{\circ}$ backward air-curtain, the suction region estimated on basis of the 0.4m/sec is improved by 66% at the same input power.

Flow control of air blowing and vacuuming module using Coanda effect (코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The efficiency of railway track cleaning vehicle for eliminating fine particulate matter (PM10 and PM2.5) in a subway tunnel depends strongly on the structure of the air blowing and suction system installed under the train. To increase the efficiency of underbody suction system, this paper proposes a novel method to use the Coanda effect for the air blower and dust suction module. In particular, through Computational Fluid Dynamics (CFD) analysis, the flow control device induced by the Coanda effect enables an increase in the overall flow velocity and to stabilize the flow distribution of the suction module at a control angle of $90^{\circ}$. In addition, the flow velocity drop at the edge of the air knife-type blower can be improved by placing small inserts at the edge of the blower. Those 4 modular designs of the dust suction system can help remove the dust accumulated on the track and tunnel by optimizing the blowing and suction flows.