• Title/Summary/Keyword: 공기유입방식

Search Result 51, Processing Time 0.024 seconds

A Study on the Relation Characteristics between Bubble Size Distribution and Floating Time (버블의 크기별 입도분포와 부상시간과의 상관특성에 관한 연구)

  • Jeon, Gun;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.277-281
    • /
    • 2017
  • Lately rainfall characteristics that it rains a lot in a short space of time often occurs. Because of this meteorological phenomena, the flow rate and concentration of initial rainfall for runoff and combined sewer overflows are changed. In the case of this inlet fluctuation, the flotation method at high surface loading rate is suitable for water quality management. the flotation method is able to meet the removal rate requirements of water public zone in 5 to 10 min which is irelatively short period. For assessment and diagonision of flotation method, A/S ratio is applied until now. But unfortunately, this has some limits for evaluation standard for certification and assessment of technical diagnosis and operation. This is why there is different efficiency in the bubble distribution at the same A/S ratio. The velocity and time of floating is changed by the different bubble distributions. The floating time affects the plant volume because the time factor make size dicision. Therefore the charateristics of bubble distribution and floating time at the same A/S ratio is necessary to apply to evaluation standard for certification and assessment of technical diagnosis and operation. For generalization of the method in certification and assessment, the characteristics of bubble distribution was studied. Until recently, using the optical device and shooting live video, there are some analysis technology of the floating factors. But this kind of technology is influenced by the equipment. with this level of confidence about the results, it is difficult to apply to generalize. According this reasons, this study should be applied on experiment generalization of method about measurement of relation between bubble distribution and floating time.

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

The Performance Analysis of a Return Air Bypass Air Conditioning System by a Simulator Experiment (실물실험에 의한 순환공기 바이패스 공조시스템의 성능분석)

  • 신현준;김보철;김정엽
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; outdoor air bypass, mixed air bypass and return air bypass system. Among bypass air conditioning systems, a return air bypass system is more effective than other two systems because it doesn't induce unconditioned outdoor air into conditioned room. The numerical study on the bypass air conditioning system shows this system can maintain indoor RH(Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. A simulator was built to compare results of a numerical experiment and those of a simulator experiment. The results of the simulator experiment was nearly same as those of the numerical experiment; when a design sensible load (the ratio of sensible load to total sensible load) was 70 percent (at this time, RSHF=0.7), indoor relative humidity (in case of both numerical experiments and simulator experiments) was maintained below 60% specified by ASHRAE STANDARD 62-1999. The bypass air conditioning system is expected to be applied to many buildings where the Percentage of latent loads or air change tate is high.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계기법 연구)

  • 이양지;차봉준;양수석;김형진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blow down type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm${\times}$200mm).

Design and Fabricate a Single Phase 1MVA Cable Transformer (단상 1MVA 케이블 변압기의 설계 및 제작)

  • Park, Jung-Ho;Heo, Woo-Heng;Cho, Ik-Choon;Jeong, Han-Jin;Kwon, Young-Ahn
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.71-73
    • /
    • 2006
  • 본 논문은 단상 1MVA 22.9kV/220V 케이블 변압기의 설계, 제작 및 시험 결과를 서술한다. 케이블 변압기는 유입변압기의 폭발위험성과 환경오염 가능성이 없으므로, 인구밀집지역, 지하장소등 설치장소의 제한이 없는 장점이 있다. 제작된 케이블 변압기는 22.9kV급의 XLPE 케이블 전선을 사용하여 1차 권선을 제작하였으며, 2차측 권선은 내 단락시 특성이 우수한 몰드 권선 형태로 제작하였다. 사용된 XLPE 케이블은 도체-내부반도전층-XLPE-외부반도전층으로 구성되어 있으며, 외부반도전층은 접지된 구조이다. 철심은 단상 3각 구조로써 방향성 규소강판을 사용하였으며, 냉각방식은 공기 자연냉각방식이다. 제작된 변압기의 신뢰성을 확보하기 위하여, 특성시험과 절연시험을 실시하였다.

  • PDF

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

Flow Characteristic of Cyclone Dust Separator for Marine Sweeping Machine (연마장비용 사이클론 집진기의 유동해석)

  • Park, MinJae;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.512-517
    • /
    • 2014
  • This paper describes the development of new sweeping machine based on Cyclone Technology, which maintains constant suction power and uses it in a industrial applications as a method for dust removed from grinding work. The performance of a cyclone separator is determined by the turbulence characteristics and particle-particle interaction. To achieve this goal, we design cyclone technology based dust separator for sweeping machine has been proposed as a system which is suitable to work utilizing dust suction alternative to conventional manual system. and Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator in order to design optimal structure of the sweeping machine. The validation of cyclone model with CFD is carried out by comparing with experimental results.

A Model Experiment Study to Secure the Straight Line Distance between the Air Inlet and Exhaust Section of the Living Room (거실제연설비중 공기유입구와 배출구간 직선거리 확보를 위한 모형실험연구)

  • Saeng-Gon Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.439-450
    • /
    • 2023
  • Purpose: When conducting fire inspections in Korea, there are objects that violate the fire protection regulations that require a straight line distance of more than 5m between the air inlet and the discharge section if the floor area is less than 400m2, and this paper analyzes the reasons and conducts a model experimental study to support the need for related fire protection regulations. Method: Domestic firefighting objects were investigated and confirmed, domestic and foreign papers, policies, and laws and regulations were examined, and spaces with a straight line distance of less than 5m and more than 5m between the air inlet and discharge section were selected and analyzed through model experiments in a living room of less than 400m2 . Result: When examining the domestic fire protection regulations (NFPCNational Fire Perpormance Code), the separation distance between the air inlet and the outlet is more than 5m when the floor area is less than 400m2 , but as a result of the actual investigation, it was confirmed that there are firefighting objects that cannot keep the separation distance. In addition, when a paper review of overseas fire protection regulations for a straight line distance of more than 5m showed that there was no regulation on the straight line distance between the air inlet and the discharge section, the model experiment showed that the discharge speed was better when the straight line distance between the air inlet and the discharge section was more than 5m than when it was less than 5m. Conclusions: In this study, when examining overseas fire laws and regulations by comparing the performance of the fire protection ratio for the straight line distance between the air inlet and the exhaust section, there is no mandatory regulation for the straight line distance, but the domestic fire protection regulations (NFPCNational Fire Perpormance Code) require more than 5m. It is hoped that this will be reflected in the design stage in the future, and a foundation will be laid to reduce the responsibility and burden of fire superintendents.

PBMS용 전기 동역학적 입자 집속 모듈 연구

  • Kim, Myeong-Jun;Kim, Dong-Bin;Mun, Ji-Hun;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.180-180
    • /
    • 2013
  • 반도체, 디스플레이와 같이 저압, 극청정 조건에서 진행되는 공정에서 발생한 오염입자는 수 율에 큰 영향을 미친다. 따라서 공정 중에 발생한 오염입자를 실시간으로 모니터링할 수 있는 장비에 대한 연구가 활발히 진행되고 있다. Particle Beam Mass Spectrometer (PBMS)는 저압에서 실시간으로 나노 입자의 크기를 측정할 수 있는 대표적인 장비 중 하나이다. 입자를 포함한 가스 유동이 PBMS로 유입되면, 우선 입자를 입자빔의 형태로 집속하는 공기역학렌즈를 통과하게 된다. 집속된 입자는 노즐에 의해서 가속되며, 이로 인해 충분한 관성을 가지게 된 입자는 양극과 음극, 필라멘트로 구성된 electron gun에서 전자충돌에 의해 포화상태로 하전된다. 하전한 입자는 electrostatic deflector에서 크기에 따라 분류되어 Faraday detector와 electrometer에 의해 측정된다. 그러나 공기역학렌즈는 입자의 크기가 작아질수록 집속 효율이 급격히 낮아진다는 문제점을 지니고 있다. 이는 입자가 작아질수록 점성에 의한 영향이 관성에 의한 영향보다 커짐으로써 나타나는 현상이다. 최근 이러한 문제점을 해결하기 위해 사중극자를 사용하여 입자를 집속시키는 방법이 대안으로 제시되었다. 사중극자는 서로 마주보는 쌍곡선 형태의 전극구조에 AC 전기장을 인가하는 방식을 사용한다. 사중극자의 중심은 정확히 평형점을 가지게 되며 입자는 사중극자 내에서 진동을 반복하며 평형점을 향해 모이게 된다. 입자의 크기가 작을수록 전기력에 의한 영향을 크게 받으므로 사중극자를 이용한 입자집속 방법은 나노입자의 집속에 있어 공기역학렌즈를 이용한 집속에 비해 이점을 지닌다. 또한 집속 하고자 하는 입자 대상이 바뀔 경우 구조를 바꿔야 하는 공기역학렌즈와 달리 사중극자를 이용한 방법은 AC 전기장을 조절하는 것 만으로 제어가 가능하다. 본 연구에서는 저압 조건에서 나노입자를 집속하기 위한 사중극자의 전극 구조를 이론적인 계산을 통하여 구하였다. 그 결과 0.1 torr의 압력 조건하에서 5~100 nm 범위의 기본 입자를 AC 전압과 진동수를 조절하여 집속할 수 있는 사중극자 형태를 설계하였다.

  • PDF