DOI QR코드

DOI QR Code

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape

공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측

  • Jeong, Seok Hoon (Dept. of Mechanical Design, Kongju Nat'l Univ.) ;
  • Suh, Hyun Kyu (Dept. of Mechanical Engineering & Automotive Engineering, Kongju Nat'l Univ.)
  • 정석훈 (공주대학교 기계설계공학과) ;
  • 서현규 (공주대학교 기계자동차공학부)
  • Received : 2016.07.24
  • Accepted : 2016.10.16
  • Published : 2016.12.01

Abstract

This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

본 논문은 전기자동차 배터리 시스템에 공기를 이용한 직접 냉각 방식을 적용하여, 공기 유로 형상에 따른 냉각 성능을 비교 연구하였다. 이를 위해, 배터리 냉각 시스템에서 모듈의 배치 형상과 발열량을 고정하고, 입 출구 면적 및 외부 Case 형상을 변경하여, 이에 따른 냉각 성능 결과를 수치 해석적으로 비교 분석하였다. 해석 결과는 배터리 내부의 공기 유동 유선(Stream line), 속도장 분포(Velocity field), 온도 분포(Temperature distributions)를 정리하여 제시하였다. 해석 결과, 외기온도 $25^{\circ}C$에서 안정적인 배터리 작동온도인 $50^{\circ}C$ 이하를 만족하기 위해서는 공기의 유입 체적이 $400m^3/h$ 이상이 되어야 함을 확인할 수 있었다. 또한, 출구 부근의 Diffuser 형상을 가지는 해석 조건에서 냉각이 끝난 공기의 배출이 원활히 진행되면서 냉각 성능이 향상되는 것을 알 수 있었다.

Keywords

References

  1. 2012, "Automotive Technology and Outlook," Auto Journal of KSAE, Vol. 34, No. 6, pp. 47-53.
  2. Kim, J. M., 2013, "Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle," Transactions of the KSAE, Vol. 21, No. 3, pp. 105-112. https://doi.org/10.7467/KSAE.2013.21.3.105
  3. Lee, D. S., 2013, "Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 3, pp. 31-36. https://doi.org/10.3795/KSME-A.2013.37.1.031
  4. Won, J. P. and Lee, H. S., 2011, "The Need to Develop Thermal Management System Technologies of Electric Driven Vehicles (EV, PHEV, FCEV)," Auto Journal of KSAE, Vol. 33, No. 12, pp. 22-28.
  5. Lee, G. E., Ko S. Y., Hong, S. C., Ahn K. Y., Nam J. D. and Kim H. S., 2011, "Development of Control Strategy and Performance Verification for Battery/Supercapacitor Hybrid ESU in Room and Low Temperatures," KSAE Annual Conference Proceedings, pp. 2622-2627.
  6. Park, S. J., 2013, "Hybrid and Electric Vehicle Thermal Management System Simulation," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 42, No. 10, pp. 48-57.
  7. Lee, D. R., 2013, "Forced Heat Transfer Characteristics of HEV Battery for Different Structures," Jou. of Korean Soc. of Mechanical Technology, Vol. 15, No. 2, pp. 174-178.
  8. Jang, I. H., Park, J. Y., Kim, D. H. and Yun, S. S., 2010, "Analysis of Cooling Efficiency According to Inlet/Outlet Position of HEV Battery Module," KSME Annual Conference Proceedings, pp. 3457-3460.
  9. Lee, J. S., Yang, K. Y., Kuk, J. Y. and Park, J. C., 2011, "An Analytical Approach for the Battery Cooling of Hybrid Battery Package," KSAE Annual Conference Proceedings, pp. 508-514.
  10. Park, J. H., Choi, B. K., Kim, S. G. and Jeong, J. H., 2011, "Study on the Prediction Methodology of Cooling Performance in HEV Battery Package Using CFD," KSAE Annual Conference Proceedings, pp. 2790-2794.
  11. Kim, J. Y., Choi, W. C. and Lee, S. J., 2013, "Battery Swappable Smart Electric Bus Energy Consumption Predictive Simulation Verification for Smart Transportation System," KSAE Annual Conference Proceedings, pp. 1805-1810.
  12. Suh, H. K., 2013, "Effect of Inlet Geometry on the Cooling Performance of Battery Pack for an Electric Vehicle," Journal of Korean Soc. of Mechanical Technology, Vol. 15, No. 5, pp. 679-684. https://doi.org/10.17958/ksmt.15.5.201310.679
  13. Jang, I. H., Choe, J. H., Park, J. Y. and Seol, S. Y., 2010, "Analysis of Forced Cooling Efficiency According to case of HEV Battery Module," KSME Annual Conference Proceedings, pp. 252-257.
  14. Suh, H. K., 2013, "Numerical Analysis of Internal Flow and Temperature Distributions of Battery for the Electric Vehicle," Journal of Korean Soc. of Mechanical Technology, Vol. 15, No. 6, pp. 813-818. https://doi.org/10.17958/ksmt.15.6.201312.813