DOI QR코드

DOI QR Code

Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source

중저온 열원에 의한 메탄 수증기 개질의 형상 인자에 따른 특성

  • Received : 2016.07.11
  • Accepted : 2016.10.16
  • Published : 2016.12.01

Abstract

In a hybrid fuel cell system, low-temperature reforming technology, which uses waste heat as a heat source, is applied to improve system efficiency. A low temperature reformer is required to optimize geometry in low thermal conditions so that the reformer can achieve the proper methane conversion rate. This study analyzed internal temperature distributions and the reaction patterns of a reformer by considering the change of the shape factor on the limited heat supply condition. Unlike the case of a high temperature reformer, analysis showed that the reaction of a low temperature reformer takes place primarily in the high temperature region of the reactor exit. In addition, it was confirmed that the efficiency can be improved by reducing the GHSV (gas hourly space velocity) or increasing the heat transfer area in the radial direction. Through reacting characteristic analysis, according to change of the aspect ratio, it was confirmed that a low temperature reformer can improve the efficiency by increasing the heat transfer in the radial direction, rather than in the longitudinal direction.

폐열을 열원으로 사용하는 저온형 개질기는 하이브리드 연료전지 시스템의 효율향상을 위해 사용되고 있다. 저온형 개질기의 경우 저온의 열적상태에서 높은 열전달 효율을 내는 것이 중요하며, 이를 위한 형상 최적화의 과정이 필요하다. 본 연구에서는 제한된 열공급 상황에서 개질기의 형상인자 변화에 따른 온도 및 반응특성을 전산해석을 통하여 알아보고자 하였다. 해석결과 저온형 개질기의 반응이 활발히 일어나는 영역은 온도가 높은 후단에 제한되는 현상을 보여 고온형 개질기와의 차이를 나타내었다. 또한 개질기의 기체공간속도(Gas hourly space velocity, GHSV)를 감소시키거나 열전달 면적을 증대시킴으로써 효율을 향상 시킬 수 있음을 확인하였고 종횡비에 따른 해석을 실시한 결과 저온형 개질기의 경우 길이방향보다는 반경방향의 열전달을 증대시키는 방법이 효과적임을 확인하였다.

Keywords

References

  1. Park, S. H., Lee, Y. D. and Ahn, K. Y., 2014, "Performance Analysis of an SOFC/HCCI Engine Hybrid System: System Simulation and Thermoeconomic Comparison," International Journal of Hydrogen Energy, Vol. 39, pp. 1799-1810. https://doi.org/10.1016/j.ijhydene.2013.10.171
  2. Veyo, S., 2002, "Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems," Journal of Mechanical Design, Vol. 124, No. 4, pp. 845-849.
  3. Zanfir, M. and Gavriilidis, A., 2003, "Catalytic Combustion Assisted Methane Steam Reforming in a Catalytic Plate Reactor," Chemical Engineering Science, Vol. 58, pp. 1967-3960.
  4. Lee, J. S., Lee, K. H., Yu, S. S., Ahn, K. Y. and Kang, S. G., 2012, "Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion," Transctions of the Korean Hydrogen and New Energy Society, Vol. 24, No. 2, pp. 113-120.
  5. Park, J. G., Lee, S. K., Lim, S. K. and Bae, J. M., 2009, "Numerical Study on Operation Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane," Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 1, pp. 60-67. https://doi.org/10.3795/KSME-B.2009.33.1.60
  6. Xu, J. and Froment, G. F., 1989, "Methane Steam Reforming, Methanation and Water-gas Shift. I: Intrinsic Kinetics," A.I.Ch.E. Journal, Vol. 35, pp. 88-96. https://doi.org/10.1002/aic.690350109
  7. Xu, J. and Froment, G. F., 1989, "Methane Steam Reforming, Methanation and Water-gas Shift. II: Diffusional Limitations and Reactor Simulation," A.I.Ch.E. Journal, Vol. 35, pp. 97-103. https://doi.org/10.1002/aic.690350110
  8. Levent M., Budak G. and Karabulut, A., 1998, "Estimation of Concentration and Temperature Profiles for Methane-steam Reforming Reaction in a Porous Catalyst," Fuel Process Technol Vol. 55, pp. 251-263. https://doi.org/10.1016/S0378-3820(98)00054-X
  9. Hsueh, C. Y., Chu, H. S., Yan, W. M., Leu, G. C. and Tsai, J. L., 2011, "Three Dimensional Analysis of a Plate Methanol Steam Micro Reformer and a Methanol Catalytic Combustor with Different Flow Channel Designs," International journal of hydrogen energy Vol. 36, pp. 13575-13586. https://doi.org/10.1016/j.ijhydene.2011.07.099
  10. Yin, F. X., Ji, S. F., Chen, B. H., Zhao, L. P., Liu, H. and Li, C. Y., 2006, "Preparation and Characterization of LaFe1 -xMgxO3/Al2O3/FeCrAl: Catalytic Properties in Methane Combustion," Applied Catalysis B: Enviromental, Vol. 66, pp. 265-273. https://doi.org/10.1016/j.apcatb.2006.03.017
  11. Kim, J., Choi, B. and Yi, J., 1999, "Modified Simulation of Methane Steam Reforming in Pd-membrane Packed Bed Type Reactor," Journal of Chem Eng Japan, Vol. 32, pp. 760-769. https://doi.org/10.1252/jcej.32.760
  12. White, F. M., 1974, Viscous Fluid Flow, McGraw-Hill, New York, pp. 163-189.
  13. Baek, S. M., Kang, J. H., Lee, K. J. and Nam, J. H., 2014, "A Numerical Study of the Effectiveness Factors of Nickel Catalyst Pellets used in Steam Methane Reforming for Residential Fuel Cell Applications," International Journal of Hydrogen Energy, Vol. 39, pp. 9180-9192. https://doi.org/10.1016/j.ijhydene.2014.04.067
  14. Kaihu, H. and Ronald, H., 2001, "The Kinetics of Methane Steam Reforming over a $Ni/{\alpha}-Al_2O$ Catalyst," Chemical Engineering Journal, Vol. 82, pp. 311-328. https://doi.org/10.1016/S1385-8947(00)00367-3