• Title/Summary/Keyword: 공기와 공사비

Search Result 231, Processing Time 0.026 seconds

A Web-based Decision Support System for Selecting Optimal Retaining Wall Systems (적정 흙막이 공법 선정을 위한 웹 기반 의사결정 지원 시스템)

  • Kim, Hye-Won;Choi, Myung-Seok;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.694-697
    • /
    • 2008
  • A retaining wall system suitable for a construction project is selected on the basis of subsoil conditions. If the decision-maker selects an improper system, it has a negative effect on the cost and schedule of the construction project. There have been many studies related to the models and processes for selecting optimal retaining wall systems. However, engineers who are not familiar with formal analysis methods could not easily utilize the formal methods proposed by previous studies. In order to overcome this problem, we developed a web-based decision support system called Dr. Underground, which is both physically and technically easily accessible by engineers. Dr. Underground was developed based on a selection method developed from a precedent research project. It was developed using a server-side web language ASP.NET and MS Access as a database. Decision-makers can input data about the building's condition, construction site conditions and adjacent site conditions in this system. Based on the input data, Dr. Underground recommends an optimal retaining wall system for the inputted conditions and provides detail information on the system.

  • PDF

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

Stability Analyses for Excavated Slopes Considering the Anisotropic Shear Strength of the Layered Compacted Ground (다짐지반에 조성되는 굴착사면의 비등방성 전단강도를 고려한 안정성 분석)

  • 이병식;윤요진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.27-35
    • /
    • 2002
  • To construct pipe lines, culverts, or other utility lines, temporary slopes formed by excavating the compacted embankment are frequently met with in the field. Ignoring stability analyses for such slopes and applying inappropriate slope inclinations often result in safety problems. In this study, stability of such slopes were investigated considering the influence of anisotropic shear strength of the layered compacted ground. A series of stability analyses were conducted for slopes varying the slope angle and the height, and assuming isotropic and anisotropic shear strength conditions, respectively. The anisotropic shear strength of the compacted soil was determined from the direct shear test for layered soil blocks varying the inclination angle between the horizontal shear surface and the direction of the soil layer. As a result of the analyses, it has been concluded that the appropriate slope inclination f3r a temporary slope could vary in accordance with the consideration of anisotropy. However, the factor of safety as well as the location of the failure surface did not show significant variation.

Development of Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브 개발)

  • Lee, Young-Ho;Song, Jae-Joon;Cho, Jae-Young;Kim, Do-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • This study aims to develop an economical precast hollow concrete column with high constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. With this purpose, this study performed the finite element analysis and tension test by using some variables such as length of sleeve, diameter of rebar and curing method for suggesting a grouting type splice sleeve which is a new type joint rebar and developing an optimized splice sleeve. As a result, the analysis on the tension performance of splice sleeve did not show any destruction caused by pull-out in reinforcing bar but it only occurred destruction of tension bar or bolt shear rupture from the mechanical defect of sleeve. Therefore, the experiment showed high performance in tension of the suggested splice sleeve and verified the application of precast hollow concrete column.

Enhancement of Desulfurization System Efficiency in 1,000 MW Coal-Fired Power Plants (1,000 MW 석탄화력발전소 대기환경오염물질 제거효율 향상을 위한 탈황설비 성능개선)

  • Lee, Young-Su;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.2
    • /
    • pp.32-41
    • /
    • 2021
  • Recently, air environmental issues such as fine dust have rapidly emerged as national issues, and intensive environmental regulations are being applied to coal-fired power plants. This study introduces the case of improving the performance of desulfurization facilities for removing sulfur oxides and dust, which are the main air pollutant emitters of coal-fired power plants, and conducted four case studies to improve the performance of 1,000 MW power plants currently in operation and carried out construction. Liquid ratio was increased by remodeling the absorption tower of desulfurization facilities, and vaporization reaction was promoted by increasing the flow rate of oxidized air. In addition, the gas heater leakage rate was improved to improve the efficiency of final desulfurization facilities. It is expected that performance improvement work considering harmony with existing facilities will satisfy the regulations(25ppm of sulfur oxides, 5mg/Sm3) that will be applied from 2023, and can be referred to other thermal power plants for review and application.

Examination of Obstacles Impeding the Deployment of New Construction Technologies On-Site and Development of an Activation Strategy (건설신기술의 현장활용 저해요인 분석 및 활성화 방안)

  • Park, Hwan Pyo;Bae, Byung Yun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • The incorporation of innovative technology systems into domestic construction practices has catalyzed an organic evolution of the industry, significantly enhancing the level of domestic construction technology and intensifying competitiveness. In particular, the on-site implementation of these groundbreaking construction technologies has proven effective in diminishing construction costs and accelerating project timelines. Nevertheless, despite a period of 33 years since the inception of this new construction technology system, both the volume of designated construction technologies and their practical application on construction sites remain static. As a consequence, this study introduces a strategic plan to dissect and overcome the barriers faced in the adoption of new construction technology across a multitude of sectors. The chief outcomes encompass the inception of a new construction technology utilization surveillance system, an assessment of distinct technologies, refinement of the post-evaluation system, and the creation of a new technology market system. This systematic enhancement is anticipated to foster the practical application of new construction technologies within the industry.

A Study on the Structural Behavior of Fabricated Columns Reinforced with Steel sheet Forms and Angles (ㄱ형강과 강판을 이용한 조립 기둥의 거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Yoon, Yeong-Ho;Kim, Sang-Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.89-98
    • /
    • 2007
  • The purpose of this study is to experimentally evaluate the structural behavior of built-up type column consisted of angles and y-shape steel sheet forms for filling concrete. This column for minimizing form working and reinforcement placing is able to improve capacity of construction and reduce the term of works. Thirteen 1/3 scaled columns were fabricated. The main variables are 1) effect of angles and y-shape steel sheets of fabricated columns, 2) slenderness of column, 3) eccentricity of column. The results show that the experimental capacity of built-up type column is similar to theoretical one by reinforcement concrete design code. The maximum loads increase according to the rate of angle to cross section of column.

An Experimental Study on Consolidation Effect of Dredged and Reclaimed Ground with PBD using Seepage Pressure (침투압을 이용한 PBD 타입 준설매립 지반의 압밀 효과에 관한 실험적 연구)

  • Lee, Moo-Chul;Park, Min-Chul;Kim, Ju-Hyun;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.13-24
    • /
    • 2012
  • In this study, the in-situ model test has been conducted and used to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analogize the relation among effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test result. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar with those of self-weight consolidation of the centrifugal model test. But, it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Analysis on Performance Assessment Framework of Construction Phase for Road Construction Projects (도로건설사업 시공단계 성과평가 프레임워크 연구)

  • Mun, Junbu;Lee, Kangwook;Yun, Sungmin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.801-809
    • /
    • 2023
  • Road construction projects have a long duration so cost overruns and schedule delays are occurred. However, performance assessment system that can manage and prepare for this in advance is insufficient. In addition, road construction are affected by many factors during under construction. Therefore it is necessary to conduct performance assessment considering the characteristics of roads and prepare for similar projects in the future. The purpose of this study is to provide a framework to evaluate construction phase performance and present a performance management plan using road construction information. Also, This study conducted time adjustment between the start and the finish of the project and developed performance metrics based on absolute and relative indicator. This study analyzed the cost, schedule, and changes of the road project construction process, showing the possibility of advancement of performance assessment and how to use it when planning new road construction projects.

Comparative risk analysis of NATM and TBM for mixed-face large-diameter urban tunneling (도심지 대단면 복합지반 NATM 과 TBM 터널공법의 비교위험도 분석)

  • Kim, Young-Geun;Moon, Joon-Shik;Shim, Jai-Beom;Lee, Seung-Bok;Choi, Chang-Rim;Chun, Youn-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.19-32
    • /
    • 2011
  • The risk assessment is essential for tunnel design in order to minimize risks associated with uncertainty about geological conditions and tunneling method. This paper provides a comparative risk analysis of a large single bore TBM driven tunnel against sequentially excavated NATM tunnel for a mixed-face large-diameter urban tunnel project near or under a river. The focus of this assessment is on the risks associated with the tunnel excavation methods, in particular whether a TBM or NATM presents more or less risk to achieve the planned excavation duration and bring the project within the estimated bid price. First, the impacts and risks to tunnel construction under each method were discussed, and the risks were scored and ranked in the order of perceived severity and likelihood. Finally, the assessment from a risk based perspective was conducted to decide which alternate tunneling method is more likely to deliver the project with the least time and cost. It is very important to note that this study is only applied to this tunnel project with specific geological conditions and other contract requirements.