• 제목/요약/키워드: 고차 수치 기법

검색결과 58건 처리시간 0.03초

Central Flux Scheme과 WENO Scheme을 이용한 고차 정확도 Hybrid Scheme의 개발 (Development of a High-Order Accurate Hybrid Scheme Using the Central Flux and WENO Schemes)

  • 권대희;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.135-141
    • /
    • 2005
  • A hybrid central-WENO scheme is proposed. The fifth order WENO-LF scheme is coupled with a central flux scheme at cell face. Two sub-schemes, the WENO-LF scheme and the central flux scheme, are switched by a weighting function. The efficiency and accuracy of the proposed hybrid central-WENO scheme is validated through several numerical experiments.

  • PDF

압축성 이상 유동(Two-Phase)의 고차 Upwind 수치해범 연구

  • 이성재;정문선;이원재;장근식
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.431-436
    • /
    • 1998
  • 표면장력이 운동량 방정식에 고려되어 완전한 방곡형으로 변환된 이상유동 방정식에 그동안 적용이 까다로왔던 고차의 Upwind 수치 방법을 처음으로 적용하였다. 이로인하여 기존의 유한 차분 수치 해석방법에서 필연적으로 나타나는 인위적인 감쇄 및 수치적 확산 문제를 개선할 수 있는 방법이 본 연구에 의해서 개발되었다 개발된 수치스킴은 MUSCL기법을 이용한 Flux of extrapolation방법을 사용하였고 시간에 대해서는 Fractional time step방법을 이용하여 공간 및 시간에 대하여 이차의 정확도를 가지게 하였다. 개발된 방범의 수치실험 결과 기존의 유한 차분법에서 발생하는 제반의 문제점들을 보완하고 보다 개선된 해를 얻을 수 있는 가능성을 확인하였다.

  • PDF

도시범람모의를 위한 다공성천수방정식의 고차 정확도 기법 개발 (Development of high-order method of porous shallow water equations for urban inundation modeling)

  • 정재영;황진환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.100-100
    • /
    • 2022
  • 일반적으로 유체와 구조물간 상호작용의 수리동역학적 모의에서는 벽경계조건을 통하여 유동에 대한 구조물의 영향이 반영된다. 하지만 도심지에서 발생한 홍수를 예측하려는 경우 이러한 방법으로는 밀집한 구조물들 사이에 형성된 좁은 길들로 인하여 세밀한 격자망을 요하여 큰 계산량을 유발하고 빠른 예측 속도를 기대할 수 없게 한다. 최근 이러한 문제를 극복하기 위해 성긴 격자망에서도 구조물의 유체에 대한 영향을 반영할 수 있도록 하는 방법들이 큰 관심을 받고 있다. 그 중에서도 다공성 천수방정식은 벽경계조건 대신 다공도(posority)의 개념을 이용한 모형으로 도시범람모의에 있어 계산량과 정확도를 가장 적절하게 타협한 모형으로 보고되고 있다. 이러한 흐름에 맞추어 본 연구는 다공도 천수방정식을 해석하는 수치 기법을 개발하였고, 여기에 최근 쌍곡선계 방정식의 수치적 연구들에서 소개된 주요 특징들이 반영되도록 설계하였다. 우선, WENO 기법과 Runge-Kutaa 기법을 통하여 공간과 시간에 대한 고차 정확도를 만족시켰다. 이 때, 재구성 변수와 알고리즘를 새롭게 제시하여 정상흐름조건에 대한 플럭스항과 생성·소멸항간 절단오차에 의한 비물리적인 흐름생성을 억제하였다. 또한, 수치모의 중 음수심의 발생으로 인하여 수치모형이 불안정해지는 현상을 막기 위해, 양-보존성 제한자를 구축하였다. 마지막으로 도심지에서 즐비한 인위적인 구조물에 의해 나타나는 지형적인 불연속의 효과를 적절하게 반영할수 있도록 정상파 재구축의 단계를 구축하여 수치 기법에 반영하였다. 이렇게 구성된 수치기법은 리만문제의 해석해에 기반하여 기존의 주요 연구들의 결과와 비교되었고, 그 결과 본 연구의 방법이 정확성, 수렴성, 안전성의 측면에서 가장 우수함을 수치적으로 증명하였다.

  • PDF

초기 쇄파의 수치모사 (Numerical Simulation of Incipient Breaking Waves)

  • 김용직;김선기
    • 대한조선학회논문집
    • /
    • 제39권4호
    • /
    • pp.1-10
    • /
    • 2002
  • 초기쇄파의 수치모사에는 지금까지 경계적분법이 주로 쓰여왔고, 이 방법은 과도한 계산시간의 문제를 제외하고는 어느 정도 성공적이라고 할 수 있다. 본 논문에서는 쇄파실험을 수치모사하기 위한 새로운 수치기법을 보였다. 이 수치기법은 고차 스펙트럴/경계요소법과 경계적분법을 순차적으로 사용하며, 계산시간을 현저히 줄여준다. 조파 및 파 에너지 집중과정은 고차 스펙트럴/경계요소법에 의해 효율적으로 수치모사되고, 파의 전복과정만이 경계적분법에 의해 계산된다. 계산예에서 높은 입자속도와 가속도 등 쇄파의 두드러진 특성이 보여졌다.

비정상 유동 해석을 위한 고차 정확도 WENO 필터 (High Order Scheme with WENO Filter for Unsteady Flow Analysis)

  • 김대희;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.56-62
    • /
    • 2003
  • The WENO filter is presented for unsteady flow analysis. The filter is low dissipative and dispersive. The results using the present WENO filter show more accurate resolution than those using other filters. The numerical analyses for several test cases are performed.

  • PDF

3-D 수치 파수조에서 비선형파 시뮬레이션을 위한 방사경계조건의 모델링 (Open Boundary Modeling for Fully Nonlinear Wave Simulation in a 3-D Numerical Wave Tank)

  • ;부성윤
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.99-106
    • /
    • 1998
  • 3차원 파수조에서 완전 비선형파를 시뮬레이션하기 위하여 우선 랜킨 소스를 기저로한 적분방정식을 고차경계요소법을 이용하여 이산화하였다. 그리고 방사경계조건은 파흡수 비치와 포텐셜 스트레칭 기법을 이용하여 모델링하였으며, 비선형 자유표면과 경계조건식은 고차 예측 및 보정 기법을 이용하여 시간 적분하였다. 파흡수 비치는 파의 진행방향 특성에 따라 수조내에 다양하게 배치할 수 있으며 비칭서 흡수가 덜된 파는 수조의 길이 방향 끝단에서 포텐셜 스트레칭 기법에 의하여 반사없이 진행하도록 하였다. 수치실험 결과 일-에너지 보존법칙과 모멘텀-임펄스 보존 법칙이 만족됨으로써 본 수치기법의 효용성이 검증되었다.

  • PDF

고차 전력 분석에 대한 통계적 수식의 일반화 (Statistical Analysis of High-Order Power Analysis)

  • 김민수;김희석;홍석희
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.27-37
    • /
    • 2011
  • d차의 고차 전력 분석은 d차 마스킹 기법에 의해 안전하게 방어할 수 있다. 하지만 이러한 고차의 마스킹 기법의 적용은 차수가 높아질수록 암호 시스템의 성능을 현저히 떨어뜨린다. 기존의 고차 전력 분석에 대한 통계적 접근은 이차 전력 분석에 대해서만 이루어져 있다. 하지만 이는 암호 설계자가 삼차 이상의 마스킹 적용 시 특별한 안전성의 기준이 없음을 의미하며 이러한 기준의 부재는 무의미하게 높은 차수의 마스킹 기법 적용으로 인해 암호 시스템의 성능을 상당히 저하시킬 수 있다. 본 논문에서는 이러한 기준을 마련하고자 고차 전력 분석에 대한 통계적 수치를 일반화하였다. 즉, 고차 전력 분석을 수행했을 때 연산되는 상관계수의 값을 일반화 시켰으며 이는 향후 마스킹 기법 사용 시 적용해야할 차수를 선택하기 위한 좋은 지표가 될 것이다.

원형 실린더에 의한 3차원 비선형 산란 문제의 수치해석

  • 성홍근;최항순
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1998년도 정기학술강연회 발표논문 초록집 Annual Meeting of Korean Society of Coastal and Ocean Engineers
    • /
    • pp.88-93
    • /
    • 1998
  • 수치 파수조기법은 해양구조물에 작용하는 비선형 파랑하중을 해석할 수 있는 가장 유망한 도구로 인식되고 있다. 이러한 수치 파수조기법은 새롭고 다양한 형태의 해양구조물에 대한 정확하고 엄밀한 설계는 물론이고, 실험 조파수조의 여러 가지 문제점을 극복하기 위해서도 매우 필요한 기법이라고 할 수 있다(Kim, 1995). 수치 과수조기법을 위한 경계치 문제 해석법으로는 고차경계요소법을 이용한 해석법이 가장 효율적인 것으로 알려져 있다. (중략)

  • PDF

고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석 (Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method)

  • 성홍근;최항순
    • 대한조선학회논문집
    • /
    • 제37권1호
    • /
    • pp.67-81
    • /
    • 2000
  • 본 연구에서는 2차원 비선형 방사문제에 대한 정확하고 효과적인 수치기법을 개발하였다. 물체운동에 의해서 생성되는 비선형파계는 이상유체라는 가정에 의하여 기술되고, 라프라스 방정식은 고차경계요소법과 GMRES(Generalized Minimal RESidual) 알고리즘을 이용하여 신속하고 효율적인 풀이가 가능하도록 하였다. 자유표면과 물체면의 교차점에서 발생하는 교차선문제는 불연속 요소를 이용하여 원활하게 해결하였다. 자유표면의 비선형운동을 기술하기 위해서 음해적 사다리꼴 법칙(implicit trapezoidal rule)을 사용하여 시적분하였다. 물체에 의해서 발생한 비선형파가 수직 하류면에서 반사하는 것을 줄이기 위하여 하류면에 수치감쇠항을 도입하였다. 수치계산 결과로부터 본 시적분법 및 수치방사조건이 비선형 방사문제에 매우 적합함을 확인하였다. 시적분 과정에서 자유표면의 격자점들을 재배치함으로써 수치해법의 효율성을 배가하였으며, 교차점근처의 유동 또한 정확하게 기술하였다. 가속도 포텐셜(acceleration potential) 기법을 이용하여 정확하고 안정하게 비선형 방사력을 구하였다. 본 수치계산결과는 다른 수치계산 및 실험결과와 비교하여 볼 때, 좋은 일치를 보인다.

  • PDF

B-스플라인 고차패널법에 의한 3차원 포텐셜 유동 해석 (A B-Spline Higher Order Panel Method for Analysis of Three Dimensional Potential Flow)

  • 김건도;황의상;이창섭
    • 대한조선학회논문집
    • /
    • 제37권2호
    • /
    • pp.57-69
    • /
    • 2000
  • 기하학적 형상과 유동의 해를 B-스플라인으로 표현하는 3차원 고차 패널법은 프로펠러 주위의 유동을 해석하기 위해 개발되었다. 제어점이 패널내에 놓이는 경우, 고차의 다이폴과 쏘오스에 의해 유기되는 자기 유기 포텐셜의 특이 거동은 2차 변환(quadratic transformation)을 통하여 제거하였으며, 특이 부분은 해석적인 적분으로 비특이 부분은 정도 높은 Gauss 구적법으로 계산함으로써 유기 포텐셜을 정도 높게 구할 수 있음을 보였다. 또한, 날개 뒷날에서의 압력 점프의 값이 명시적으로 영이 되도록하는 동역학적 Kutta 조건식을 도입하고, 이의 적용이 안정된 해를 보장함을 확인하였다. 수치 실험을 통하여, 제안된 수치해석 기법이 안정적이고 정확한 해를 줌을 확인하였으며, 특히 저차 패널법과 비교하여 적은 수의 패널로 동일한 정도의 해를 유지할 수 있음을 보였다.

  • PDF