T TS8ER $12% F 13K, pp.99~106, 1998. 2

® B

X

Open Boundary Modeling for Fully Nonlinear Wave
Simulation in a 3-D Numerical Wave Tank
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1. INTRODUCTION

One of the crucial step for the completion of
the nonlinear wave simulation in the numerical
wave tank is treatment of open boundary, where
non-reflection of the wave is required. The open
the
artificial, and essentially arbitrary. However, the

boundaries enclosing fluud domain are
waves propagating to the boundary should be

fully transmitted or absorbed. Several modeling
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schemes for the open boundary condition have
been developed. Longuet-Higgens&Cokelet” and
Xu? well applied a periodic condition to the
Beer&Watson”
utilized the infinite element in which the open

overturning wave simulation.

boundary is mapped to the infinite distance.
Orlanski condition” has widely been used as a
59 Arai”

instead

used
of

transmitting condition of waves
the
absorbing beach before applying the Orlanski

velocity reduction scheme
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condition. An absorbing beach scheme was
mitiated by Cointe”. Since then, several different
versions of the scheme”'™"" have been reported.
Matching scheme of inner solution to outer
solution was applied by Dommermuth& Yue'”.

For the present research, we utilized the
combined scheme of absorbing beach and
potential stretching. The absorbing beach was
firstly distributed near the open boundary. Since
the absorbing rate varies according to beach
length, it requires an additional scheme to
transmit the partially absorbed wave. A potential
stretching, therefore, was implemented on the
truncation boundary.

Rankine source-based integral equation was
discretized by employing a quadratic order
boundary element method. The free surface
conditions were integrated using the 4th-order
predictor-corrector method within the time
marching scheme and the location of the free
surface was updated every time level.

The Stokes second-order wave was used as
an input wave. The wave was gradually fed
through the inflow boundary using a wave
modulation scheme to reduce an initial transient
disturbance. The accuracy of the present nu-
merical scheme was tested using the con-—
servation of energy-workdone as well as

momentum-impulse.

2. MATHEMATICAL FORMULATION

The origin of a Cartesian coordinate system is
in the plane of the undisturbed free surface with
the x-axis positive in the direction of wave
propagation and positive x-axis in the opposite
direction of the gravity as shown in Fig. 1. It is
assumed that the fluid is ideal, incompressible,
and its motion 1s irrotational. The free surface
tensions are also ignored and water depth is

finite.

— l(x)__

i e -

Fig. 1 Coordinate systems and boundary Surfaces

The fluid motion can be described by the total
velocity potential of #(x.D. where % is the
coordinates (x,y,2) and ¢ the time. The

potential #(x. D satisfies the Laplace equation

vi(x,H=0 (1)

in the space occupied by the fluid. The kinematic

and dynamic free surface conditions on 'y are

08, 0 0L, 0 3L 94 _
ot T ax ox Ty vy 9z 0 )

Gl verar=0 3)

On flat bottom boundary I's, the following
nonpenetrating condition is used.

24 g @)
n

The wunit normal vector 1is denoted by
n={(n,n,n,) and it is pointing out of the fluid
domain. Open boundary condition i1s imposed on
the side boundary [I'y, upstream boundary and
downstream boundary [s.

Since the proposed problem is solved in the
time domain, the initial condition must also be

satisfied. The condition is

#(x, D=0, +<0 in the fluid domain (5)
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A7, H=0, t<0 in the fluid domain

3. FORMULATION OF INTEGRAL
EQUATION

The direct boundary integral equation for the
velocity potential #(x.#) is derived using
Green’s theorem. The resulting equation is
209G 9G
¢+ fr,-.nd’ on r,wd’ an (6)
_ 0¢ _ G
- frs,wG on r,u,,¢ on

The solid angle C is 0 or 4z when the field
point 1s outside the boundary or in the fluid
domain. When the field point is located on the
nonplanar boundary, the solid angle is computed
using special manner. Two symmetry planes are
utilized to model the half fluid domain and
exclude the bottom boundary. The Green’'s
function is

A
R,

1o
&t )

G= + + E

1
R

The distances between two points are given as:

R, =V (x=x)?+(y—y)*+(z2—2,)

Ry =V (x—x)"+ (y+y) 4 (2—2))° )
Ry =V (x—x)°+ (y+ )+ (z2+ 2,4+ 2d)°

Ry =V (x—x)?+(y— ) +(2—2,+2d)°

where a is the water depth. The (x,y,2) and

(x;,vi,2) are the field and source point,
respectively.

The entire curved boundaries can be
approximated by numbers of higher order elements.
Within the element, the physical variables are
interpolated by higher order polynomials. The
resulting approximations are written as:

¢ = ZJN@;' (9
a¢ _ 09
an Z;N’( on )
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where N, is the shape function at the ;-th
node. The ¢, and (2%), are the velocity
potential and normal velocity at the ;-th node.
We used both nine-node continuous and
discontinuous quadrilaterals shown in Fig. 2.
The shape functions for those quadrilaterals are
well explained in Boo™.

EE

(a) Continuous element

(b} Discontinuous element

Fig. 2 Continuous and discontinuous quadrilaterals
of guadratic order

By substituting equation (9) into equation (6),
the integral equation is represented in the
discrete form as:

goau Cidnt gl B g+ k=$w+1 CuF+R(_S%)4

Neaw . 4
S T

sewt 1

§10)]

where ¢=1,2,--, NN, NN= total number of
nodes, Ngs= number of nodes on I's, Ny =

number of nodes on I'y and

B = 2w [ SEN; 1T dedy
Ca®' " = TZew [ G NIl dedn
Cu " = T3, fr;mc N\ T dédn

S, O,r= Kronecker delta function

where 7 is the node number at the ;-th node
on the e-th element, ¢ the element number and
| J| the Jacobian.
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Since the discretized integral eguation is
variant in time, all the boundary surfaces are
regridded at each time step. The influence
coefficients are also recomputed using the
updated grids.

4. OPEN BOUNDARY MODELING

The open boundary i1s modeled by the
following manners. Firstly, the absorbing beach
is placed in the longitudinal as well as
transverse direction of the tank in order to
partially absorb the waves as shown in Fig. 3.
The dynamic free surface condition on the
beaches can be written as:

98+ L4 ve+attus=0 a2

where the tuning factor g is determined in the

following equations,

u= p, x5 I
ay i xx ¥ (3)
Hy+ly : xsz, yZyb
0 otherwise
where
— 2
=9 X~ Xp
Hx = ( L, ) (14)
_ 9 _
sy = 2( yLyb) Xtanh%
¥y

Here x, is the distance from the inflow
boundary to the longitudinal beach-front while
y; is the distance from the centerline of the
tank to the transverse beach-front. The coor-
dinates x and 3 are measured from the inflow
boundary and the centerline of the tank,
respectively. The term of
introduced
damping in the longitudinal direction and A is

tanhjf in g, is

to allow  gradual increment of

the wave length.
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Fig. 3 Modeling of open boundary using absorbing
beach and potential stretching for open
boundary condition

Secondly, a stretching method is applied to
the outflow boundary (Fig. 4). The resulting
equations of the stretching for the velocity
potential and velocity are

W3 0= b, 5,0 0Kzt D 1s)

08( %0 9%, D coshk(z,+d)
am ~ on sinh &d

(16)

where ¢0(;, f) is the velocity potential on the
instantaneous free surface at the upper edge of
the open boundary and 4 the wave number.
The mapped z-coordinate z. is defined as

(z+d) xd

tt+d ¢ 17

=

where @ is the water depth and ¢, the location
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Fig. 4 Potential stretching on the open boundary
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of the instantaneous free surface at the upper
edge of the open boundary.

Lastly, in treating the boundary condition on
the inflow boundary, stretching scheme which is
analogous to one on the outflow boundary is
employed. The mapped coordinate on the

boundary is
- (z2td) y_
2T T 1 d x(d+ &) — (18)

where ¢, 1s ¢ of the incident wave. The

velocity potentials and velocities on the boundary
are computed using the coordinates and utilized
for the input wave generation.

5. CHECKS OF ACCURACY

A global check of the time stepping accuracy

is provided by the volume error relative to the

initial volume'”. The total volume (V. V,, V)

of the fluld in the three directions is computed
using

(Veu V. VO = [ (any, yn,., 2n )l (19)

The total energy E, and workdone W should
balance in the fluid where E, is the sum of the

potential energy E, and the kinetic energy E;

E, - E,)‘*‘E/, (20)
1 2 09
y 2fFnar+ 3 [ oG dr

It

W= gfo'fep—g%drdt @1)

The conservation of the total momentum
(M., M,,M,)) and impulse (I,,I,I) in the

three directions is computed using
(Mo My, M) = 3 [($n.dmy gmddl  (22)

t
o B L) = B[ [(pnepnypn)dl di (23)
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6. NUMERICAL RESULTS

The continuous quadratic element was used to
discretize the enclosed boundary except the
intersection region near the downtank boundary,
where the partially discontinuous element with

parameter 8= % was distnibuted.

The fourth-order Adams-Bashforth-Moulton
method was applied to integrate the free surface
conditions. The second-order Stokes waves were
fed through the inflow boundary. The waves at
the inflow boundary increased gradually using a
modulation function which satisfies the initial
calm water condition. The modulation time was
chosen as one wave period. A numerical
instability was avoided by employing the
appropriate time increment of As-f%, where 7T is

the period of the incident wave. The wave
elevation, velocity potential, normal derivative of
potential, and velocities were filtered every two
time step using five neighboring points in the
longitudinal as well as transverse direction of the
tank. The elevation of the simulated wave was
normalized by the amplitude of the incident wave.
The principal dimensions of the wave tank are
length x width X depth = 12RX6Rx1.16 K where
R denotes the unit length. The beach length is
half of the wave length and the beach is placed
at the 3/4 tank length from the inflow boundary.
The parameters of the incident waves were
A/d=0.1, d/R=1.16 and kR=1.3

The simulation was performed for the two
different cases. Firstly, we simulated the fully
nonlinear wave in a rectangular wave tank.
Wave elevations were measured at the four
different locations. The locations are the inflow
boundary B, tank center D, beach-front E and
beach-end F as shown in Fig. 5. The absorbing
rate of the wave on the beach is found to be
about 50 percents for the beach length of 0.5A.
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It has been reported that beach length chosen

affects absorption. This will be investigated

further in the following test.

—— Meosured
- Measured
Meosured
Measured

Elevation

Fig. 5 Wave elevations time histories measured

at the various locations of the tank

The percent error of the fluid volume relative
to the initial one is compared in Fig. 6. The
error oscillates in the time but within 2 percents.
The balance of the total energy and workdone
by the fluid is investigated in the Fig. 7. The
values increase gradually until the waves are
fully developed. It is shown that both the energy
and workdone are well conserved. Further
validation is made using the momentum-impulse
conservation in Fig. 8 and Fig. 9. The values in
the x and 2z directions are shown to be well

balanced.
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Fig. 6 Volume error(%) in the x, » and

directions
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Potentiat E.
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Fig. 7 Balance check of the energy and work-
done
© 8
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Fig. 8 Balance check of the momentum and

impulse in the x-direction

kR=1.3 —— z-Momentum

2—Impulse

Momentum —tmpuise

5
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Fig. 9 Balance check of the momentum and

impulse in the =z-direction

Secondly, the nonlinear wave was simulated in
the non-rectangular shaped tank in order to
investigate three dimensional effect as well as
absorbing rate of wave. The tank length varies
12R to 15.6R. The distances from the beach-
front to the four beach-end points of D, E, F
and G are about 0.54, 0.734, 1.04 and 1.254,
The time histories of the wave

elevation at the four locations are shown in Fig.

respectively.

10. It can be seen that the absorption of the
waves varies with the beach length as it is
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Fig. 11 Wave contour at the various time instants
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expected from the tuning factor given in
equation (13). The waves at F and G where the
beach lengths are bigger than one wave-length,
were almost dampened. It can be stated that at
least one wave length beach should be furnished
for the complete absorption in the present
modeling. The modeling was also examined by
comparing the wave contours for the different
11

Reflections due to the present scheme for the

duration of simulation shown in Fig.

open boundary modeling are not found.

7. SUMMARY AND CONCLUSIONS

The overall numerical scheme for the sim-
ulation of either nonlinear or even linear waves
highly depends on the method of the open
boundary modeling. The aim of the present work
1s, therefore, to develope a numerical scheme in
treating the open boundary condition for the
fully nonlinear wave simulation in the time
domain. The modeling scheme was established
in the 3D numerical wave tank which has
inflow, outflow, side and bottom boundaries. A
combined condition of a numerical absorbing
beach with a potential stretching was introduced
for the present open boundary modeling. The
numerical beach scheme has widely been applied.
However, since the absorbing rate of the wave
fields varies with the beach length, it may not
be easy to set an appropriate beach in the tank
in order to take into account from a short wave
to long wave. Because of that reason,
introduced an additional device called potential
to the truncation boundary. The

we

stretching
function of the stretching is to fully transmit
waves which may not be absorbed on the
beach.

A quadratic order boundary element method
was utilized to approximate the integral equation
based on Rankine source. The free surface

conditions were integrated every time step using
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the 4th—0rder predictor—corrector method. The
fully nonlinear wave was simulated by satisfying
all the prescribed boundary conditions. The
Stokes second-order wave was used as an input
wave which was modulated for initial one wave
period. It was found that the beach length should
be bigger than one wave length for the complete
absorption. The performances of the present
numerical scheme were investigated by checking
the conservation of energy and workdone as well
as balance of momentum and impulse. They are
proven to be well conserved during the simulations.
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