• Title/Summary/Keyword: 고유모드해석

Search Result 473, Processing Time 0.03 seconds

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Updating of Finite Element Models Including Damping (감쇠를 포함한 유한요소 모형의 개선)

  • Lee, Gun-Myung;Ju, Young-Ho;Park, Mun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1243-1249
    • /
    • 2012
  • Finite element models are updated in two stages in this paper. In the first stage, damping is neglected, and mass and stiffness matrices of a finite element model are updated using an optimization technique. The objective function for optimization consists of natural frequencies and mode shapes obtained from experimental modal testing data and finite element analysis. In the second stage, damping is considered with the mass and stiffness matrices fixed. A damping matrix is estimated assuming a proportional damping system. Then the damping matrix is adjusted using an optimization process so that the difference between the analytical and measured frequency response functions becomes minimum. This procedure of model updating has been applied to a simulated system and an experimental cantilever beam.

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

FE Model Updating on the Grillage Model for Plate Girder Bridge Using the Hybrid Genetic Algorithm and the Multi-objective Function (하이브리드 유전자 알고리즘과 다중목적함수를 적용한 플레이트 거더교의 격자모델에 대한 유한요소 모델개선)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, a finite element (FE) model updating method based on the hybrid genetic algorithm (HGA) is proposed to improve the grillage FE model for plate girder bridges. HGA consists of a genetic algorithm (GA) and direct search method (DS) based on a modification of Nelder & Mead's simplex optimization method (NMS). Fitness functions based on natural frequencies, mode shapes, and static deflections making use of the measurements and analytical results are also presented to apply in the proposed method. In addition, a multi-objective function has been formulated as a linear combination of fitness functions in order to simultaneously improve both stiffness and mass. The applicability of the proposed method to girder bridge structures has been verified through a numerical example on a two-span continuous grillage FE model, as well as through an experimental test on a simply supported plate girder skew bridge. In addition, the effect of measuring error is considered as random noise, and its effect is investigated by numerical simulation. Through numerical and experimental verification, it has been proven that the proposed method is feasible and effective for FE model updating on plate girder bridges.

Design and Analysis of Structure for SpaceEye-1 (SpaceEye-1 위성의 구조체 설계 및 해석)

  • Jeon, Jae-Sung;Jeong, Sumin;Choi, Woong;Kang, Myungseok;Jeong, Yunhwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.257-264
    • /
    • 2015
  • The structure of SpaceEye-1 developed by Satrec Initiative is designed to carry out various earth observation missions in harsh launch and orbit environments. This paper describes methodology of the structure design and analysis performed during the SpaceEye-1 development. The SpaceEye-1 structure is designed not only to endure the static/dynamic loads but also to protect a main payload and all other components under the launch environments. The structural design requirements were derived from the requirements of the launch vehicle, payload, and other subsystems from the initial development phase. Three-dimensional modeling process was used to verify geometric compatibility of the structure with the other subsystems, and finite element analysis was used to confirm whether the designed structure satisfied all the mechanical requirements derived from the launch vehicle and payload.

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt (수동형 압전션트를 이용한 외팔보의 진동저감 연구)

  • Yun, Yangsoo;Kim, Jaechul;Noh, Heemin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Dynamic Characteristics Recovery of Delaminated Composite Structure (층간 분리가 있는 복합재 구조물의 동적특성 회복)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • In this paper, feasibility of dynamic characteristics recovery of delaminated composite structure is numerically studied by using active control algorithm and piezoelectric actuator. Macro-fiber composite(MFC), which has great flexibility and high actuating force, is considered as an actuator in this work. After construction of finite element model for delaminated composite structure based on improved layerwise theory, modal characteristics are investigated and changes of natural frequencies and mode shapes, caused by delamination, are observed. Then, active control algorithm is realized and implemented to system model and control performances are numerically evaluated. Dynamic characteristics of delaminated composite structure are effectively recovered to those of healthy composite structure.

Dynamics of a HDD spindle system due to the change of FDBs (유체베어링의 설계변화에 따른 HDD 스핀들 시스템의 동특성 해석)

  • Park, Ki-Yong;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.407-413
    • /
    • 2008
  • This paper investigates the dynamics of a HDD spindle system due to the change of FDBs. Flying height of the HDD spindle system is determined through the static analysis of the FDBs, and the stiffness and damping coefficients are calculated through the dynamic analysis of the FDBs. Free vibration characteristics and shock response of the HDD spindle system are analyzed by using the finite element method and the mode superposition method. Experimental modal test is also performed to verify the accuracy of the proposed method. This research shows that the stiffness coefficients of journal heating mostly affect the rocking frequencies because their magnitude are within the range of the stiffness of supporting structure. It also shows that the damping coefficients of thrust bearing mostly affect the axial frequency because the stiffness of thrust bearing is much smaller that that of supporting structure.

  • PDF

Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle (드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향)

  • Chung Won-Jee;Lee Choon-Man;Lee Jung-Hwan;Lim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.