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ABSTRACT

Finite element models are updated in two stages in this paper. In the first stage, damping is ne-
glected, and mass and stiffness matrices of a finite element model are updated using an optimization 
technique. The objective function for optimization consists of natural frequencies and mode shapes ob-
tained from experimental modal testing data and finite element analysis. In the second stage, damping 
is considered with the mass and stiffness matrices fixed. A damping matrix is estimated assuming a 
proportional damping system. Then the damping matrix is adjusted using an optimization process so 
that the difference between the analytical and measured frequency response functions becomes 
minimum. This procedure of model updating has been applied to a simulated system and an ex-
perimental cantilever beam.

요  약

이 논문에서 유한요소 모형은 2단계로 개선된다. 첫 단계에서는 감쇠를 무시하고, 최적화 방법을 사용

하여 유한요소 모형의 질량행렬과 강성행렬을 개선한다. 최적화를 위한 목적함수는 모드시험 데이터와 유

한요소해석으로부터 구한 고유진동수와 진동형으로 이루어져 있다. 두 번째 단계에서는 첫 단계에서 구한 

질량행렬과 강성행렬을 고정시키고, 감쇠를 고려한다. 먼저 비례감쇠를 가정하고 감쇠행렬을 추정한 다음, 
해석적인 주파수응답함수와 측정한 주파수응답함수의 차가 최소가 되도록 최적화 과정을 이용하여 감쇠행

렬을 조정한다. 이와 같은 모형개선 방법을 시뮬레이션 계와 실제 외팔보에 적용하였다.

* 

1. Introduction

It has become necessary to predict the re-
sponses of complicated mechanical systems and 

structures under dynamic loadings. Since the re-
sponses can be hardly predicted analytically, nu-
merical methods are usually employed for that 
purpose, and finite element analysis(FEA) is one 
of the methods used frequently. Numerical pre-
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dictions of the behaviour of a physical system is 
limited by the assumptions used in the develop-
ment of the mathematical model. As a result, the 
predicted responses may differ from the ex-
perimentally measured ones. 

In those cases, finite element models can be 
updated so that the predicted responses based on 
the models agree with the measured ones. Finite 
element model updating has emerged in the 1990s 
as a subject of immense importance to the design, 
construction and maintenance of mechanical sys-
tems and civil engineering structures. The related 
researches are surveyed(1) and summarized(2) in 
references. The approaches to model updating in-
clude the sensitivity analysis(3) and the frequency 
response function(FRF) method developed by 
Lin(4) and Imregun(5). Brief description on those 
approaches is omitted here because it is included 
in the previous papers(6,7) by the authors. Usually 
damping is not considered in finite element model 
updating, and the stiffness and mass matrices of 
the systems under consideration are updated. 
Model updating including damping has been per-
formed in few researches(8~10).

The authors proposed finite element model up-
dating in two stages(6,7). In the first stage, damp-
ing is neglected, and mass and stiffness matrices 
of a finite element model are updated using an 
optimization technique. The objective function for 
optimization consists of natural frequencies and 
mode shapes obtained from experimental modal 
testing data and FEA. In the second stage, damp-
ing is considered with the mass and stiffness ma-
trices fixed. To consider damping three methods 
were applied(7). Method 1 estimates a damping 
matrix from the modal matrix and the modal 
parameters. The modal matrix is obtained from 
the finite element model updated in the first stage, 
and the modal parameters are extracted from the 
measured FRFs. Since the method assumes propor-
tional damping, its application is limited to pro-
portional damping systems. Method 2 estimates a 

damping matrix from the imaginary part of the 
impedance matrix which is the inverse of the FRF 
matrix(11). One drawback of the method is that it 
requires the inverse of a full FRF matrix. 
Measurement of a full FRF matrix takes a long 
time and much effort especially when the degree 
of freedom is large. Another one is that small er-
rors in a FRF matrix may result in  large errors 
after calculating its inverse. Application of this 
method to simulated data showed that the esti-
mated damping matrix was very sensitive to added 
noise. From these results it may be concluded that 
method 2 is not suitable for estimating a damping 
matrix unless very accurate FRFs without noise 
are measured. Method 3 calculates correction to 
the initial damping matrix from the difference be-
tween the analytical and measured FRFs. The 
method requires measurement of one column of a 
FRF matrix. When using the method, FRFs corre-
sponding to rotational degrees of freedom are 
needed. Since these FRFs are not usually meas-
ured during modal testing, they can be either ap-
proximated from their corresponding analytical 
FRFs or calculated from measured FRFs for trans-
lational degrees of freedom. Conclusively the 
above methods to estimate a damping matrix have 
a limitation in their application or cannot estimate 
accurate damping matrices. 

A new method is proposed in this paper to es-
timate an accurate damping matrix in the second 
stage of finite element model updating. The meth-
od is applicable to non-proportional damping sys-
tems as well as proportional damping systems. To 
investigate the effectiveness and limitations of the 
method, it is applied to a simulated 4 dof system 
and a cantilever beam. 

2. Finite Element Model Updating

2.1 First Stage
In the first stage of model updating, finite ele-

ment models are updated using an optimization 
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technique. The objective function for optimization 
consists of the differences between the analytical 
responses from FEA and the measured responses. 
The chosen response parameters are natural fre-
quencies and mode shapes. To represent the dif-
ferences between mode shapes, MAC(modal assur-
ance criterion) values are used. The objective 
function can be composed as Eq. (1).
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In the above equation ω  indicates a natural fre-
quency, the subscripts ‘a’, ‘m’, and ‘i’ imply 
‘analytical’, ‘measured’, and mode number, re-
spectively, and n represents the number of modes 
considered.

As updating variables of a finite element model 
which affect the objective function in Eq. (1),  
material properties such as Young’s modulus, 
physical dimensions such as thickness, boundary 
conditions, and parameters of attached sensors 
which cause a loading error can be selected.

2.2 Second Stage
In the second stage of model updating, damping 

is considered with the mass and stiffness matrices 
fixed. Damping estimation starts from the damping 
estimation of a proportional damping system. For 
systems with proportional damping, the following 
relation holds.

][]][[][ ii
T CXCX = (2)

where [X] is the modal matrix whose columns 
represent the mode shapes, and [Cii] is a diagonal 
matrix whose i-th element has the value of iiωζ2  

where iζ  and iω  represent the damping ratio 
and the natural frequency of mode i, respectively. 
These modal parameters can be estimated from 
the measured FRFs using a modal parameter ex-
traction algorithm, for example, the complex ex-
ponential algorithm(12). The diagonal elements of  

[Cii] corresponding to the modes outside the anal-
ysis frequency range are set to zeros. From the 
above relation the matrix [C] can be obtained as 
follows.

11 )]][([]][][[)]][([][ −−= TT
ii

T XXXCXXXC (3)

The above equation means that the damping 
matrix can be obtained from the estimated natural 
frequencies and damping ratios, and the modal 
matrix. On the assumption that the mode shapes 
of a lightly damped system are similar to the 
mode shapes of the corresponding undamped sys-
tem, the modal matrix [X] obtained from the up-
dated finite element model in the first stage can 
be used in the above equation. The FRFs of the 
system can be predicted using the above damping 
matrix and Eq. (4).

12 ])[][]([][ −+−= CiMKH ωω (4)

where [M] and [K] represent the mass and stiff-
ness matrices obtained in the first stage. If the 
measured and predicted FRFs agree well, it is 
concluded that the considered system exhibits pro-
portional damping characteristics, and the model 
updating procedure stops.

For a non-proportional damping system, the 
damping matrix obtained by Eq. (3) is not valid 
and it should be adjusted further. Taking the 
above damping matrix as a starting point, an opti-
mization process can be performed to minimize 
the sum of the differences between analytical and 
measured FRFs. When performing an optimization 
process, part of the elements of a damping matrix 
which have large sensitivities may be selected as 
updating variables.

3. Application of the Model 

Updating Procedure

The proposed two stage model updating proce-
dure was applied to a simulated 4 dof system and 
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a simple steel cantilever beam. Since the first 
stage of the procedure is described in the authors’ 
previous research(6,7), this paper focuses on the 
damping estimation in the second stage.

3.1 A Simulated 4 dof System
To demonstrate the effectiveness of the proce-

dure, a 4 dof simulated system in Fig. 1 was 
considered. The system parameters are m1=m2=m3

=m4=1 kg, k1=k2=k3=k4=1000 N/m, c1=c2 =5 Ns/m 
and c3=c4=10 Ns/m, resulting in non-proportional 
damping. It is assumed that accurate mass and 
stiffness matrices of the system are obtained in 
the first stage. Modal parameters of the system 
are extracted from the analytical FRFs calculated 
using Eq. (4). Assuming proportional damping, a 
damping matrix is calculated using Eq. (3). The 
exact damping matrix of the system and the ma-
trix estimated assuming proportional damping are 
given in Eqs. (5) and (6), respectively. 
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The difference between two matrices is not 
small. The estimation error defined in Eq. (7) be-
comes 27.60 %. 
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In the above equation, ije  and ijeΔ  represent 
each element of a matrix and its error, 
respectively. Fig. 2 compares the exact FRF and 
the predicted FRF using the damping matrix in 
Eq. (6). 

To adjust the estimated damping matrix, an op-
timization process was performed. The objective 
function was formed as a sum of the differences 
between the exact and predicted FRFs. When cal-
culating the predicted FRFs using Eq. (4), it was 
assumed that the exact mass and stiffness matrices 
of the system were obtained in the first stage. All 
the upper triangular elements, that is, 10 elements 
of the 4×4 damping matrix were selected as up-
dating variables. The matrix in Eq. (6) served as 
the starting point of an optimization process. The 
updating variables were constrained to vary be-
tween 0 and two times the initial values. Using a 
constrained optimizer function of MATLAB(13), an 
optimum point was arrived. At the reached opti-
mum point, the estimated damping matrix became
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Comparing the matrix with that in Eq. (6), the 
accuracy of the estimated damping matrix has 

Fig. 1 A 4 dof system with lumped parameters

Fig. 2 Comparison of the exact(solid line) and pre-
dicted(dotted line) FRFs for the 4 dof system
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been much improved. The estimation error defined 
by Eq. (7) becomes 7.08 % in this case. When the 
FRFs were calculated using this damping matrix, 
the predicted FRFs agreed with the exact ones al-
most exactly. Hence those FRFs are not shown 
for brevity. 

A genetic algorithm was applied to the above 
optimization problem. The same objective function, 
updating variables, and bounds for the variables 
were used. When the values of the used pop-
ulation size, the number of maximum generation, 
the crossover probability, and the mutation proba-
bility were equal to 120, 3000, 0.9, 0.1, re-
spectively, an optimum point closer to the exact 
one was reached. The obtained damping matrix is 
given in Eq. (9).
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The obtained damping matrix in Eq. (9) is very 
close to the exact one in Eq. (5) and the corre-
sponding estimation error is 1.24 % only. 
However, one disadvantage of a genetic algorithm 
is that it requires a much longer computation time 
than gradient based algorithms.

3.2 A Cantilever Beam
The proposed two stage model updating proce-

dure was applied to a simple steel cantilever 
beam with length 0.27 m, width 0.034 m, thickness 
0.0015 m, and density 7850 kg/m3. For FEA, the 
beam is divided into five elements with equal 
length. Hence the finite element model of the 
beam has 5 nodes and 10 dofs. FEA and modal 
testing of the beam are described in detail in the 
authors’ previous paper(6). Performing the first 
stage of the proposed model updating procedure, 
the positions of resonant peaks agree very well 
between the measured and predicted FRFs, but the 

moduli of peaks differ due to neglect of damping 
as shown in Fig. 3.

Assuming proportional damping, a damping ma-
trix was obtained using Eq. (3). In this equation, 
the modal matrix [X] was obtained from the up-
dated finite element model in the first stage, and 
[Cii] from the estimated modal parameters. With 
the obtained damping matrix, the FRFs were cal-
culated using Eq. (4), and one of them is com-
pared with its corresponding measured one in Fig.
4. Examining the figure, one can observe that the 
analytical FRF agrees well with the measured one 
except near zero frequency, indicating that the up-
dated finite element model is reasonably accurate. 

Fig. 3 Comparison of the measured(solid line) and 
predicted(dotted line) FRFs after the first 
stage

Fig. 4 Comparison of the measured(solid line) and   
predicted(dotted line) FRFs after proportional 
damping is considered
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Fig. 5 Comparison of the measured(solid line) and    
predicted(dotted line) FRFs before the damp-
ing matrix adjustment

Fig. 6 Comparison of the measured(solid line) and 
predicted(dotted line) FRFs after the damping 
matrix adjustment

Disagreement between two FRFs near zero fre-
quency is due to inherent characteristics of piezo-
electric transducers.

Next, the above damping matrix was adjusted 
through an optimization process. Since the degree 
of freedom of the beam is 10, the damping ma-
trix is a 10×10 matrix and is composed of 55 dif-
ferent elements considering the symmetry of the 
matrix. If one selects all these elements as updat-
ing variables, there are too many updating varia-
bles, resulting in a time-consuming optimization 
process. To reduce the number of updating varia-
bles, the sensitivities of FRFs to the change of an 
element of the damping matrix were calculated 
around resonance frequencies. It is because FRFs 

are sensitive to the change of a damping matrix 
around resonance frequencies. Those elements with 
large sensitivities were selected as updating varia-
bles, and they are C17, C33,C37,C39,C47,C55,C57,C67,
C77,C79, and C99. These updating variables were 
constrained to vary between 0 and two times their 
initial values. Without constraints for elements of 
system matrices, matrices which do not have 
physical meanings may be resulted through opti-
mization processes. The objective function was 
formed as a sum of the differences between the 
measured and analytical FRFs. Using a constrained 
optimizer function of MATLAB, an optimum 
point was arrived and the objective function was 
reduced by 16.7 %. When FRFs were calculated 
with the updated damping matrix using Eq. (4) and 
compared with the measured ones, the agreement at 
resonance peaks improved. Figs. 5 and 6 compare 
the measured and predicted FRFs around the fifth 
mode at 908 Hz before and after the adjustment of 
the damping matrix, respectively. One can observe 
that resonance peaks agree exactly after the 
adjustment. These results imply that an accurate 
damping matrix has been estimated through the 
model updating procedure.

4. Conclusions

A procedure to update finite element models is 
proposed and applied to a simulated 4 dof system 
and a steel cantilever beam. The updating proce-
dure is composed of two stages. In the first stage, 
damping is neglected, and the mass and stiffness 
matrices of a finite element model are updated us-
ing an optimization technique. 

In the second stage, damping is considered with 
the mass and stiffness matrices fixed. First, a 
damping matrix is estimated assuming a propor-
tional damping system. Then the damping matrix 
is adjusted using an optimization process so that 
the difference between the analytical and measured 
FRFs becomes minimum. Applications to a simu-
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lated and an experimental system showed that this 
procedure can estimate accurate damping matrices. 
When a genetic algorithm is used for an opti-
mization process, more accurate results can be ob-
tained with the expense of a long computation 
time. 
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