• 제목/요약/키워드: 고객데이터

검색결과 1,272건 처리시간 0.027초

빅데이터를 활용한 은행권 고객 세분화 기법 연구 (A Customer Segmentation Scheme Base on Big Data in a Bank)

  • 장민석;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.85-91
    • /
    • 2018
  • 대부분의 은행은 고객 세분화를 위해 성별, 나이, 직업, 주소 등 인구통계정보만을 사용하고 있으나, 이는 고객의 다양한 금융행동 패턴을 반영하지 못하는 단점이 있다. 본 연구에서는 은행 내 다양한 빅데이터를 융합하여 문제점을 해결함과 동시에 향후 많은 은행에서 폭넓게 활용될 수 있는 고객 세분화 방법을 개발하는 것을 목표로 한다. 본 연구에서 제안한 블록을 만들어 이 블록을 클러스터링하는 상향식 방식의 세분화는 기법을 제안한다. 이 방식은 기존의 인구통계정보 뿐만 아니라 다양한 거래패턴, 채널접촉패턴에 기반을 둔 고객의 다양한 금융니즈를 정교하게 반영할 수 있다는 장점이 있다. 세분화를 통해 고객의 금융니즈를 보다 정교하게 반영한 적정 동료그룹을 찾아 이를 기반으로 상품추천, 금융니즈 등급 산출, 고객이탈 예측 등 다양한 마케팅 모델을 개발하여 실제 농협은행 마케팅에 활용할 것이다.

고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발 (Financial Products Recommendation System Using Customer Behavior Information)

  • 김효중;김성범;김희웅
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.111-128
    • /
    • 2023
  • 인공지능(AI) 기술이 발전함에 따라 빅데이터 기반의 상품 선호도 추정 개인화 추천시스템에 관심이 증가하고 있는 추세이다. 하지만 개인화 추천이 적합하지 않은 경우 고객의 구매 의사를 감소시키고 심지어 금융상품의 특성상 막대한 재무적 손실로 확대될 수 있는 위험을 가지고 있다. 따라서 고객의 특성과 상품 선호도를 포괄적으로 반영한 추천시스템을 개발하는 것이 비즈니스 성과 창출과 컴플라이언스 이슈 대응에 매우 중요하다. 특히 금융상품의 경우 개인의 투자성향과 리스크 회피도에 따라 고객의 상품 선호도가 구분되므로 축적된 고객 행동 데이터를 활용하여 맞춤형 추천서비스를 제안하는 것이 필요하다. 이러한 고객의 행동 특성과 거래 내역 데이터를 사용하는 것뿐만 아니라, 고객의 인구통계정보, 자산정보, 종목 보유 정보를 포함하여 추천 시스템의 콜드 스타트 문제를 해결하고자 한다. 따라서, 본 연구는 고객의 거래 로그 기록을 바탕으로 고객의 투자성향과 같은 특성 정보와 거래 내역 및 금융상품 정보를 통해 고객별 금융상품 잠재 선호도를 도출하여 딥러닝 기반의 협업 필터링을 제안한 모형이 가장 성능 우수한 것을 확인하였다. 본 연구는 고객의 금융 투자 메커니즘을 기반으로 금융상품 거래 데이터를 통해 미거래 금융상품에 대한 예상 선호를 도출하는 추천 모델을 구축하여, 선호가 높을 것으로 예상되는 상위 상품군을 추천하는 서비스를 개발하는 것에 의의가 있다.

고객 공통 정보를 이용한 데이터마이닝 기반의 고객 분류 기법에 대한 연구 (Study of Customer Classification Algorithm Based on Data Mining Technology Using Customer Common Information)

  • 김영일;송재주;양일권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1883_1884
    • /
    • 2009
  • 자동검침 데이터를 이용하여 고객의 가상 부하패턴을 생성하고 회선 및 구간의 부하를 분석하는 연구가 활발히 진행되고 있다. 본 논문에서는 기존에 연구된 산업분류 별 평균 부하패턴을 이용하는 방법과 고객의 부하 형태 인덱스를 이용한 방법의 문제점을 살펴보고, 이를 개선하기 위한 방법으로 고객의 속성정보를 이용하여 고객을 분류하는 방법을 제안하였다.

  • PDF

RNN을 이용한 고객 이탈 예측 및 분석 (Customer Churn Prediction Using RNN)

  • 이세희;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

신용카드 시장에서 데이터마이닝을 이용한 이탈고객 분석 (Customer Churning Analysis by Using Data Mining in Credit Card Market)

  • 이건창;정남호;신경식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.421-444
    • /
    • 2001
  • 최근 데이터 마이닝 기법이 주목받고 있는 이유 중의 가장 큰 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리할 수 있도록 지원하기 때문이다. 특히 고객 보유율 5% 신장이 수익률 120% 증대를 가져오는 것으로 보고되고 있는 신용카드 업계에서는 신규고객을 확보하는 것 만큼 기존 고객을 유지·관리하는 것이 중요하다. 특히, 신용카드를 발급 받고 거의 사용하지 않은 고객이나 쉽게 이탈하는 고객을 판별하는 것은 신용카드사의 입장에서는 비용절감 차원에서 매우 중요하다. 그러나 아직까지 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 연구는 거의 진행되지 않았다. 이에 본 인구에서는 데이터마이닝 기법 중 널리 알려진 인공신경망, 로지스틱 회귀분석, C5.0 방법을 이용하여 신용카드 시장에서의 고객현황에 대하여 분석하고자 한다. 이를 위하여 본 연구에서는 모 신용카드사의 최근 4년간 (97넌 3월 이후) 가입고객 및 이탈고객을 대상으로 실증분석을 실시하였다. 분석결과 신용카드 시장에서 카드를 지속적으로 보유하고 있는 고객과 이탈하는 고객을 구분하는 속성이 존재함을 발견하였고, 이를 바탕으로 신용카드사가 수립해야 할 마케팅 전략을 제시하였다.

  • PDF

고객 중심의 기업 경영 및 마케팅을 위한 데이터 마이닝의 활용 : 멀티플렉스에 적용 (Data Mining for Business & Marketing Based on Customer)

  • 정동한;최원길;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.311-314
    • /
    • 2008
  • 최근 기업의 경영 및 마케팅 환경은 급변하고 있다. 특히 기업 간 경쟁에서 우위를 차지하기 위해서는 고객과의 관계를 구축하고 유지하는 것이 매우 중요한데, 신규고객의 유치보다는 기존고객의 유지하는 것이 기업에게 있어 더 유익하다. 이를 위해 데이터 마이닝의 방법에 기반 하여 비즈니스 인텔리젼스(BI)와 고객관계관리(CRM)을 활용할 수 있다. 본 논문에서는 멀티플렉스를 통해 관련 지식들을 적용해 보고자 한다.

인터넷 프로모션의 지식 인프라

  • 한국데이터베이스진흥센터
    • 디지털콘텐츠
    • /
    • 12호통권79호
    • /
    • pp.28-29
    • /
    • 1999
  • 데이터 마이닝을 통해 기업은 웹사이트상의 패턴을 의미 있는 정보로 종합해내고 인터넷 상의 고객들과 예상치를 이해하고 연관시킬수 있게 된다. 데이터와 웹이 제공하는 방대한 사업지식의 흐름에 근거한 웹 마이닝은 온라인 고객과의 관계를 생성하고 유지시키며 생산성 있는 온라인 상점의 최전선을 구축하는데 있어 결정적 열쇠가 되는 것이다.

  • PDF

신용카드업에서 데이터마이닝의 활용 -고객행동기반의 고객세분화-

  • 진서훈;안상욱
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.171-174
    • /
    • 2004
  • 기업들이 심화된 경쟁체제 속에서 고객에 대한 보다 심층적인 이해를 필요로 하고 정보기술의 발달로 각 요소활동내용의 데이터화가 가능해짐에 따라 CRM으로 대변되는 고객 정보의 전략적 활용이 매우 중요하게 되었다. 이를 위해 기업은 고객에 대한 이해를 바탕으로 고객관리 및 마케팅을 수행하기 위한 필수적인 도구인 고객세분화를 수행하고 있다. 본 연구에서는 신용카드고객의 카드사용행태에 근거하여 서로 유사한 사용행태를 보이는 고객군으로 세분화하는 과정을 소개한다. 고객이 실제로 카드를 사용하면서 발생시킨 거래정보에만 의존하여 고객세분화를 수행하였으며 이는 마케팅의 관점에서 상당히 의미 있는 내용이라 볼 수 있다. 고객세분화를 위하여 데이터마이닝기법인 k-평균군집방법과 최장연결법에 의한 계보적 군집방법을 활용하였다

  • PDF

XML 기반 여러 형태 프로파일을 이용한 고객세분화 (Client Segmentation using XML-based Multiform Profile)

  • 안형근;이단영;고재진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (C)
    • /
    • pp.88-90
    • /
    • 2006
  • 최근 정보 통신기술의 발전으로 인하여 전자상거래가 확산되고 있는 실정이며, 이용하는 고객 또한 상당히 증가하고 있다. 고객의 활발한 구매 거래 활동으로 하루에도 아주 많은 양의 데이터가 생성되고 있는 실정이다. 이에 전자상거래의 웹 사이트 관리자나 경영자는 고객의 구매형태나 패턴의 특징을 파악하여 보다 효율적인 서비스를 고객에게 제공하기 위하여 현재까지 유사그룹의 고객 세분화를 적용하는 연구가 이루어지고 있다. 본 논문에서는 전자상거래에서 고객들의 정보를 분석하여 개인화하기 위한 방법으로 사용되는 고객 프로파일을 이용하여 고객세분화 하는데 적용을 하고자 한다. 기존 고객세분화의 통계적인 분석이 아닌 XML 기반의 고객 정보를 XPath를 이용하여 고객세분화에 필요한 규칙을 생성하고, 그 규칙을 바탕으로 고객 프로파일을 생성하는 방법과 프로파일을 이용한 군집에 따른 분석 결과 및 추천서비스를 소개하고자 한다.

  • PDF

지문 인식을 이용한 효율적인 ICC 설계 및 구축 (A Study on Design and Implementation of efficient ICC using Fingerprint Recognition)

  • 김주영;이선영;이상락;이병수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.909-912
    • /
    • 2002
  • 인터넷을 비롯한 정보통신기술의 발달로 소비시장의 주체가 고객 중심으로 변화하면서, 고객 관리를 위한 CRM(Customer Relationship Management)이 더욱 중요시되고 있다. CRM의 부각으로 정확한 고객 정보를 획득하기 위한 인증 메커니즘이 발전하였고, 고객과 원활한 커뮤니케이션을 위해 컴퓨터와 진화가 통합된 CTI(Computer Telephony Integration)가 대중화되면서 고객 접점 채널의 역할이 증대되었다. 현재의 고객 접점 채널은 고객 정보를 획득하는 것이 쉽지 않으며, 수집된 고객 정보의 신뢰도가 떨어져서 분석데이터로 직접 사용하기에 적합하지 않은 요소를 지니고 있기 때문에 고객이 고객 접점 채널에 접근시 반복적인 인증 절차를 거쳐야 한다. 따라서 본 논문에서는 고객 접근 방식 자체를 간소화하기 위해 생체 인식 기술의 하나인 지문 인식을 이용하여 ICC(Internet Call Center)를 구축하고자 한다. 본 논문에서 구축한 지문 인식을 이용한 ICC로 기업에게는 신뢰성있는 고객 정보를 제공하고, 고객에게는 빠르고 편리한 접근 방식을 제공할 수 있다.

  • PDF