Abstract
Most banks use only demographic information such as gender, age, occupation and address to segment customers, but they do not reflect financial behavior patterns of customers. In this study, we aim to solve the problems by using various big data in a bank and to develop customer segmentation method which can be widely used in many banks in the future. In this paper, we propose an approach of segmenting clustering blocks with bottom-up method. This method has an advantage that it can accurately reflect various financial needs of customers based on various transaction patterns, channel contact patterns, and existing demographic information. Based on this, we will develop various marketing models such as product recommendation, financial need rating calculation, and customer churn-out prediction based on this, and we will adapt this models for the marketing strategy of NH Bank.
대부분의 은행은 고객 세분화를 위해 성별, 나이, 직업, 주소 등 인구통계정보만을 사용하고 있으나, 이는 고객의 다양한 금융행동 패턴을 반영하지 못하는 단점이 있다. 본 연구에서는 은행 내 다양한 빅데이터를 융합하여 문제점을 해결함과 동시에 향후 많은 은행에서 폭넓게 활용될 수 있는 고객 세분화 방법을 개발하는 것을 목표로 한다. 본 연구에서 제안한 블록을 만들어 이 블록을 클러스터링하는 상향식 방식의 세분화는 기법을 제안한다. 이 방식은 기존의 인구통계정보 뿐만 아니라 다양한 거래패턴, 채널접촉패턴에 기반을 둔 고객의 다양한 금융니즈를 정교하게 반영할 수 있다는 장점이 있다. 세분화를 통해 고객의 금융니즈를 보다 정교하게 반영한 적정 동료그룹을 찾아 이를 기반으로 상품추천, 금융니즈 등급 산출, 고객이탈 예측 등 다양한 마케팅 모델을 개발하여 실제 농협은행 마케팅에 활용할 것이다.