• Title/Summary/Keyword: 고강도 강선

Search Result 17, Processing Time 0.024 seconds

Parametric study of optimum design variables of PPWS socket and stability analysis (PPWS용 정착소켓의 최적설계를 위한 매개변수해석 및 안정성 검토)

  • Yoo, Hoon;Seo, Ju-Won;Jung, Woon;Lee, Sung-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.6-9
    • /
    • 2010
  • 본 논문에서는 최소 중량을 갖는 PPWS용 소켓의 기하형상을 결정하기 위하여 소켓의 경사각, 스트랜드의 강도 및 스트랜드의 직경을 주요 설계변수로 결정하고 각 설계 경우에 대한 매개변수해석을 수행하였다. 소켓의 경사각은 5도에서 13도까지를 범위로 하였고 스트랜드의 강도는 1860MPa급, 1960MPa급 및 2100MPa급의 고강도 강선을 적용한 경우를 고려하였으며, 스트랜드의 직경은 91, 127, 169 및 217개의 강선을 적용한 경우를 대상으로 하였다. 또한, 매개변수해석에서 도출된 기하형상을 갖는 소켓의 안정성을 검토하기 위하여 유한요소해석을 이용하여 소켓을 해석하고 스트랜드의 허용인장력 작용시 소켓의 안정성을 검토하였다. 해석 결과, 소켓의 중량을 최소화하는 내부 경사각은 스트랜드의 직경에 큰 영향을 받음을 알 수 있었으며, 매개변수해석으로부터 설계된 소켓은 스트랜드의 허용인장력 작용시 충분한 안정성을 확보하고 있음을 알 수 있었다.

  • PDF

Applicability Verification of High-strength Parallel Wire Strands by Tensile Tests (인장 실험을 통한 현수교 주케이블용 고강도 평행선스트랜드의 적용성 검토)

  • Yoo, Hoon;Seo, Ju-Won;Lee, Sung-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.435-447
    • /
    • 2011
  • This paper discusses the problems in application of a parallel wire strand with high performance steel wires, which have the tensile strength of 1960 MPa grade, as a major component of the main cables in suspension bridges. Construction methods of main cables in suspension bridges are briefly reviewed by comparing the pros and cons of available methods. Required items for performance and quality of parallel wire strands are described based on the established references. Ultimate tensile strength tests are carried out for seven specimens in order to analyze the behavior of high-performance parallel wire strands. The test results demonstrate that the properties of test specimens are satisfied with performance indexes specified in this paper. The high-performance parallel wire strands are acceptable for application in main cables of suspension bridges.

Punching Test for Development of High-strength Rockfall Net (고강도 포획망 개발을 위한 펀칭시험)

  • Hyunwoo Jin;Sanghoon Seo;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.25-30
    • /
    • 2023
  • The high-strength rockfall net developed in this study is to replace the fallout prevention net method using PVC coating net made of core wire thickness 3.2 mm and tensile strength 290-540 MPa class steel wire. General PVC coating net have low performance, and in the event of falling rocks or surface loss, they cannot withstand the load and are torn, which rather adds to the damage. Developed rockfall net was manufactured using steel wires with a core wire thickness of 2.8 to 3.2 mm and a tensile strength of 1,000 to 2,000 MPa. Test method was referred to the international standard Steel wire rope net panels and rolls-Definitions and specifications (ISO 17746:2016), and was conducted in accordance with the provisions of the punching test. Through indoor punching tests, the load-displacement curves of the general PVC coating network and the developed high-strength capture net (1,000 and 2,000 MPa) were compared, and the maximum Pull-out load was analyzed to be improved by 324.47% (2,000 MPa high-strength net).

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

A Study on the Local Strength Structural Analysis for Steel Yacht (강선요트의 국부강도 구조해석에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.155-159
    • /
    • 2005
  • Analysis target ship is not introduced yet in domestic as steel yacht that is getting into the spotlight by leisure life in Australia or Japan. Sailing yacht or Yacht for leisure time made of FRP into controlling power fare mainly and the design and made of latest fishing boat and something of domestic is consisting mainly. To need investigated for concept is various kinds overall strength as that use mainly steel wire material structurally of steel yacht by small crafts about Longi strength, Transe strength portion even of design safety factor at subject to do Rule's allowable stress enough stable structure accomplish. But it is assessment of part intensity that become refer to most in small size ship.

  • PDF

Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence (비원형 신선을 이용한 고강도-고연성 펄라이트 강선의 제조)

  • Baek, Hyun Moo;Hwang, Sun Kwang;Joo, Ho Seon;Im, Yong-Taek;Son, Il-Heon;Bae, Chul Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.743-749
    • /
    • 2014
  • In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate (고강도 콘크리트 말뚝과 기초판 접합부의 최적 철근보강량 산정)

  • Park, Jong-Bae;Sim, Young-Jong;Chun, Young-Soo;Park, Seong-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Method of protruding steel bar embedded in PHC pile for connecting with foundation plate is an intermediate form of fixed and hinged connection and has often been used in architectural structures such as apartment complex. However, mechanical properties of this method have not been proved and its construction process is not simple. In this study, therefore, by analyzing previous research and by considering ratio of steel bar and concrete in PHC pile, which is minimum reinforcement of rebar, the newly optimized method of reinforcing joint of PHC pile and foundation plate is suggested with respect to PHC pile type (PHC 450, PHC 500, and PHC 600). To assess mechanical properties (ultimate tensile and shear strength) of joint of PHC pile and foundation plate, full scale experimental tests are performed. As a result, all cases are satisfied with required design criteria and can be practically applied. Our results indicate that reduction of rebar reinforcement compared to previous method would lead cost saving in PHC pile construction.

Characteristic of Fatigue Properties with Tension and Bending Loading Using High Strength Steel Wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • U, Byeong-Cheol;Kim, Sang-Su;Kim, Byeong-Geol;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate to investigate the characteristics of fatigue properties with tension and bending loading of a high carbon steel wire. The fatigue behaviors have been carried out by tension-tension, 4 points bending and 3 points bending loading. In the present study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodmans theory and we investigated S-N diagram for bending and tensile loading.

Characteristic of fatigue properties with tension and bending loading using high strength steel wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • Woo, Byung-Chul;Kim, Sang-Soo;Kim, Byung-Guel;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.274-279
    • /
    • 2000
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate a high carbon steel wire. We tested for basic mechanical properties and 3 types fatigue behavior, tension-tension, 4 points bending and 3 points bending fatigues. In this study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodman's theory and we investigated S-N diagram for bending and tensile loading.

  • PDF