• Title/Summary/Keyword: 계층적 클러스터링 알고리즘

Search Result 100, Processing Time 0.026 seconds

A Gene Clustering Method with Hierarchical Visualization of Alignment Pairs (계층적 정렬쌍 가시화를 이용한 유전자 클러스터 탐색 알고리즘)

  • Jin, Hee-Jeong;Park, Su-Hyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartA
    • /
    • v.16A no.3
    • /
    • pp.143-152
    • /
    • 2009
  • One of the main issues in comparative genomics is to study chromosomal gene order in one or more related species. For this purpose, the whole genome alignment is usually applied to find the horizontal gene transfer, gene duplication, and gene loss between two related genomes. Also it is well known that the novel visualization tool with whole genome alignment is greatly useful for us to understand genome organization and evolution process. There are a lot of algorithms and visualization tools already proposed to find the "gene clusters" on genome alignments. But due to the huge size of whole genome, the previous visualization tools are not convenient to discover the relationship between two genomes. In this paper, we propose AlignScope, a novel visualization system for whole genome alignment, especially useful to find gene clusters between two aligned genomes. This AlignScope not only provides the simplified structure of genome alignment at any simplified level, but also helps us to find gene clusters. In experiment, we show the performance of AlignScope with several microbial genomes such as B. subtilis, B.halodurans, E. coli K12, and M. tuberculosis H37Rv, which have more than 5000 alignment pairs (matched DNA subsequence).

Collision Risk Assessment by using Hierarchical Clustering Method and Real-time Data (계층 클러스터링과 실시간 데이터를 이용한 충돌위험평가)

  • Vu, Dang-Thai;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The identification of regional collision risks in water areas is significant for the safety of navigation. This paper introduces a new method of collision risk assessment that incorporates a clustering method based on the distance factor - hierarchical clustering - and uses real-time data in case of several surrounding vessels, group methodology and preliminary assessment to classify vessels and evaluate the basis of collision risk evaluation (called HCAAP processing). The vessels are clustered using the hierarchical program to obtain clusters of encounter vessels and are combined with the preliminary assessment to filter relatively safe vessels. Subsequently, the distance at the closest point of approach (DCPA) and time to the closest point of approach (TCPA) between encounter vessels within each cluster are calculated to obtain the relation and comparison with the collision risk index (CRI). The mathematical relationship of CRI for each cluster of encounter vessels with DCPA and TCPA is constructed using a negative exponential function. Operators can easily evaluate the safety of all vessels navigating in the defined area using the calculated CRI. Therefore, this framework can improve the safety and security of vessel traffic transportation and reduce the loss of life and property. To illustrate the effectiveness of the framework proposed, an experimental case study was conducted within the coastal waters of Mokpo, Korea. The results demonstrated that the framework was effective and efficient in detecting and ranking collision risk indexes between encounter vessels within each cluster, which allowed an automatic risk prioritization of encounter vessels for further investigation by operators.

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.278-280
    • /
    • 2012
  • We are propose the position of the node context-awareness information and the validity of the head node in the path according to the clustering how to elect one of the energy efficiency ECOPS (Energy Conserving Optimal path Schedule) algorithm. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution, if the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. ECOPS algorithm that contextual information is contributed for head node selection in topology protocols. The proposed ECOPS algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election show as the entire node lifetime and network management technique improving the network lifetime and efficient management the simulation results.

  • PDF

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, we introduce a method that can be used to select the position of head node for context-awareness information. The validity of the head node optimal location is saving the energy in the path according to the clustering. It is important how to elect one of the relay node for energy efficiency routing. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution during the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. The proposed ECOPS (Energy Conserving Optimal path Schedule) algorithm that contextual information is contributed for head node selection in topology protocols. This proposed algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election technique show improving the entire node lifetime and network in management the network from simulation results.

RRA : Ripple Routing Algorithm Considering the RF-Coverage of the node in WSN (RRA : 무선센서 네트워크에서 노드의 통신영역을 고려한 랜덤 배치 고정형 라우팅 알고리즘)

  • Lee, Doo-Wan;Kim, Min-Je;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.820-823
    • /
    • 2011
  • WSN is composed of a lot of small sensors with the limited hardware resources. In WSN, at the initial stage, sensor nodes are randomly deployed over the region of interest, and self-configure the clustered networks by grouping a bunch of sensor nodes and selecting a cluster header among them. In this paper, we propose a self-configuration routing protocol for WSN, which consists of step-wise ripple routing algorithm for initial deployment, effective joining of sensor nodes. RRA is search node in RF-coverage of each node, which result in fast network connection, reducing overall power consumption, and extending the lifetime of network.

  • PDF

Data Direction Aware Clustering Method in Sensor Networks (데이터 전송방향을 고려한 센서네트워크 클러스터링 방법)

  • Jo, O-Hyoung;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.721-727
    • /
    • 2009
  • Wireless Sensor Networks(WSN) make use of low cost and energy constrained sensor nodes. Thus, reaching the successful execution of its tasks with low energy consumption is one of the most important issues. The limitation of existing hierarchical algorithms is that many times the data are transmitted to the opposite direction to the sink. In this paper, DDACM (Data Direction Aware Clustering Method) is proposed. In this method, the nearest node to the sink is elected as cluster head, and when its energy level reaches a threshold value, the cluster head is reelected. We also make a comparison with LEACH showing how this method can reduce the energy consumption minimizing the reverse direction data transmission.

A Energy-Efficient Cluster Header Election Algorithm in Ubiquitous Sensor Networks (USN에서 에너지 효율성을 고려한 효과적인 클러스터 헤더 선출 알고리즘)

  • Hur, Tai-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.197-203
    • /
    • 2011
  • In this paper, a new cluster configuration process is proposed. The energy consumption of sensor nodes is reduced by configuring the initial setup process only once with keeping the initial cluster. Selecting the highest power consumed node of the member nodes within the cluster to the header of next round can distribute power consumption of all nodes in the cluster evenly. With this proposed way, the lifetime of the USN is increased by the reduced energy consumption of all nodes in the cluster. Also, evenly distributed power consumptions of sensors are designed to improve the energy hole problem. The effectiveness of the proposed algorithms is confirmed through simulations.

Construction Scheme of Training Data using Automated Exploring of Boundary Categories (경계범주 자동탐색에 의한 확장된 학습체계 구성방법)

  • Choi, Yun-Jeong;Jee, Jeong-Gyu;Park, Seung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.479-488
    • /
    • 2009
  • This paper shows a reinforced construction scheme of training data for improvement of text classification by automatic search of boundary category. The documents laid on boundary area are usually misclassified as they are including multiple topics and features. which is the main factor that we focus on. In this paper, we propose an automated exploring methodology of optimal boundary category based on previous research. We consider the boundary area among target categories to new category to be required training, which are then added to the target category sementically. In experiments, we applied our method to complex documents by intentionally making errors in training process. The experimental results show that our system has high accuracy and reliability in noisy environment.

A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing (스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

On Generating Backbone Based on Energy and Connectivity for WSNs (무선 센서네트워크에서 노드의 에너지와 연결성을 고려한 클러스터 기반의 백본 생성 알고리즘)

  • Shin, In-Young;Kim, Moon-Seong;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Routing through a backbone, which is responsible for performing and managing multipoint communication, reduces the communication overhead and overall energy consumption in wireless sensor networks. However, the backbone nodes will need extra functionality and therefore consume more energy compared to the other nodes. The power consumption imbalance among sensor nodes may cause a network partition and failures where the transmission from some sensors to the sink node could be blocked. Hence optimal construction of the backbone is one of the pivotal problems in sensor network applications and can drastically affect the network's communication energy dissipation. In this paper a distributed algorithm is proposed to generate backbone trees through robust multi-hop clusters in wireless sensor networks. The main objective is to form a properly designed backbone through multi-hop clusters by considering energy level and degree of each node. Our improved cluster head selection method ensures that energy is consumed evenly among the nodes in the network, thereby increasing the network lifetime. Comprehensive computer simulations have indicated that the newly proposed scheme gives approximately 10.36% and 24.05% improvements in the performances related to the residual energy level and the degree of the cluster heads respectively and also prolongs the network lifetime.

  • PDF