• Title/Summary/Keyword: 경사경계조건

Search Result 138, Processing Time 0.027 seconds

Experimental Study of Freshwater Discharge and Saltwater Intrusion Control in Coastal Aquifer (해안대수층에서 담수-염수 경계면 변화에 따른 최대담수양수량과 염수침투제어에 대한 실험적 연구)

  • Suh, Seong-Kook;Oh, Chang-Moo;Kim, Won-Il;Ho, Jung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.159-168
    • /
    • 2010
  • This study investigates the relationships between the maximum freshwater pumping discharge and hydraulic properties of coastal aquifer using a laboratory model. The experiment performed the fresh pumping test in various locations near the saltwedge induced by saltwater intrusion to freshwater over aquifer characteristics of hydraulic conductivity, salinity, and ground surface slope. Saltwater pumping also tested to protest saltwater intrusion to the excessively discharging freshwater well. The maximum freshwater discharges were achieved, and then the optimum saltwater discharges were measured. It is found that greater hydraulic conductivity and ground surface slope produced greater the maximum freshwater pumping discharge. Salinity gave less impact on the pumping discharge relatively. Higher freshwater discharge was found at higher hydraulic conductivity and steeper ground surface slope. The optimum saltwater discharge required 14% more pumping rate than the maximum freshwater discharge to keep saltwater intrusion to the freshwater pumping well. Pumping well located closer to salt-wedge profile promoted less freshwater pumping discharge. Therefore, pumping well location, hydraulic conductivity, ground surface slope, and salinity should be taken into account in freshwater pumping in coastal aquifer.

Numerical Model Study on a Scheme to Restrain Deformation of a Conduit with Flexible Joint(I) : Effectiveness of Soil Reinforcement (연성이음관의 변형억제방안에 관한 수치모델연구(I): 기호지반 보강효과)

  • 손준익;정하익
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.5-14
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a buried conduit subjected to differential settlement via a finite element modeling. The soil-reinforcement inter- action helps to minimize the differential settlement between the adjoining conduit segments. Three different field conditions have been considered. The settlement pattern and deformation slope have been evaluated for each boundary condition. The analysis results are compared for both non-reinforced and reinforced case to measure the effectiveness of the soil reinforcement for restraining deformation of the conduit.

  • PDF

Wave Field Analysis around Permeable Rubble-Mound Breakwaters (투과 사석방파제 주변의 파랑장 해석)

  • 곽문수;이기상;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, a method that leads to make a simple decision on important parameters in analysis of wave field in permeable rubble-mound, block-mound breakwater, such as penetration velocity of incident waves and resistance coefficient, is introduced. A model that could analyze wave field of permeable breakwater in harbor, by applying these methods and arbitrary transmission coefficient boundary condition to a time-dependent mild-slope equation, was introduced. The verification of the model was done by carrying out 2-D physical model test on permeable breakwater, measuring the change in water surface elevation, comparing the computation result with time series, and comparing the result gained from the 3-D physical model test on permeable block-mound breakwater in an field harbor with the computation result in terms of regional wave height ratio in a harbor.

Application of Numerical Model - FLUMEN to Inundation (FLUMEN 모형의 홍수범람 적용성 검토)

  • Bae, Yong-Hoon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1376-1380
    • /
    • 2004
  • 본 연구에서는 홍수범람지도 제작을 위해 사용되는 수치모형의 검증을 수행하고자 한다. 검증할 수치모형은 스위스의 Beffa에 의해 개발된 FLUMEN(FLUvial Modeling ENgine)으로서 수심 적분된 2차원 비선형 천수방정식에 불규칙 심각망을 이용한 유한체적법(finite volume method)이 적용된 수치모형이며 스위스, 독일, 오스트리아 등에서 홍수범람해석에 사용된 바 있는 모델이다. FLUMEN 모형의 검증을 위하여 범람해석시 가장 중요한 문제인 이동경계조건(moving boundary condition)을 포함하고 있는 원형섬에서의 고립파에 처오름높이를 계산하여 수리모형실험 결과와 비교한다. 수리모형실험은 미국 육군 공병단 산하의 해안공학연구소(CERC, Coastal Engineering Research Center)에서 수행되었으며(Liu 등, 1995) 수조의 중앙에 높이 0.625m, 해저지름 7.2m, 경사각 $14.04^{\circ}$의 원형섬이 위치한다. 본 연구 결과, 수치해석으로 계산된 섬에서의 실제 처오름높이와 입사파의 파고의 비(R/A)는 수리모형실험의 결과와 어느 정도 일치하였다.

  • PDF

A Prediction Method of Wave Deformation in Harbors Using the Mild Slope Equation (완경사 방정식을 이용한 항내의 파고예측)

  • 최선호;박상길
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 1993
  • Since major reason of disaster in coastal area is wave action, prediction of wave deformation is one of the most important problems to ocean engineers. Wave deformations are due to physical factors such as shoaling effect, reflection, diffraction, refraction, scattering and radiation etc. Recently, numerical models are widely utilized to calculate wave deformation. In this study, the mild slope equation was used in calculatin gwave deformation which considers diffraction and refraction. In order to slove the governing equation, finite element method is introduced. Even though this method has some difficulties, it is proved to predict the wave deformation accurately even in complicated boundary conditions. To verify the validity of the numerical calculation, experiments were carried out in a model harbour of rectangular shape which has mild slope bottom. The results by F.E.M. are compared with those of both Lee's method and the experiment. The results of these three methods show reasonable agreement.

  • PDF

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Numerical Simulation of Supersonic Inlet Flow (초음속 흡입구 유동의 수치모사)

  • Kwak, Ein-Keun;Yoo, Il-Yong;Lee, Seung-Soo;Jung, Suk-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.133-137
    • /
    • 2009
  • Numerical simulations of flows in an axisymmetric supersonic inlet with bleed regions were performed. For the simulations, the existing code which solves the RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was transformed to axisymmetric form and bleed boundary condition was applied to the code. In this paper, the modified code was validated by comparing the results against an experimental data and other computational results for flow on a bump and over an oblique shock with bleed region. Using the code, numerical simulations were performed for the flow in the inlet with multiple bleed regions.

  • PDF