• Title/Summary/Keyword: 경계추출 알고리즘

Search Result 250, Processing Time 0.033 seconds

3D Region Growing Algorithm based on Eigenvalue of Hessian matrix for Extraction of blood vessels (혈관추출을 위한 Hessian 행렬 고유치 기반 3 차원 영역확장 알고리즘)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.1641-1644
    • /
    • 2004
  • 3차원 볼륨데이터에서 분할 대상영역의 밝기 값이 다양하면서 밝기 값이 유사한 영역과 인접한 경우 3차원 영역확장(region growing) 방법을 사용하여 영역을 분할하기 위해서는 영역확장의 중요한 요인인 동질성 기준 값의 적절한 선택이 요구된다. 본 논문에서는 영역 복셀(voxel)의 1차 미분 값의 크기인 기울기 크기(gradient magnitude)만으로 영역의 경계를 찾기가 쉽지않은 대상의 분할을 위해 볼륨데이터의 지역적인 밝기 값의 변화의 특징을 고려하면서 분할 대상영역의 복셀의 2차 미분(second partial derivation)을 행렬의 요소(element)로 갖는 Hessian 행렬의 고유치(eigenvalue)를 영역확장의 문턱치 결정에 이용하였다. 제안한 알고리즘은 3차원 영역확장의 결과에 가장 큰 영향을 미치는 적절한 문턱치의 선택으로 대상영역의 분할을 성공적으로 수행하여 3차원 영역확장의 단점을 보완하였다.

  • PDF

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures (PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

Boundary Detection using Adaptive Bayesian Approach to Image Segmentation (적응적 베이즈 영상분할을 이용한 경계추출)

  • Kim Kee Tae;Choi Yoon Su;Kim Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an adaptive Bayesian approach to image segmentation was developed for boundary detection. Both image intensities and texture information were used for obtaining better quality of the image segmentation by using the C programming language. Fuzzy c-mean clustering was applied fer the conditional probability density function, and Gibbs random field model was used for the prior probability density function. To simply test the algorithm, a synthetic image (256$\times$256) with a set of low gray values (50, 100, 150 and 200) was created and normalized between 0 and 1 n double precision. Results have been presented that demonstrate the effectiveness of the algorithm in segmenting the synthetic image, resulting in more than 99% accuracy when noise characteristics are correctly modeled. The algorithm was applied to the Antarctic mosaic that was generated using 1963 Declassified Intelligence Satellite Photographs. The accuracy of the resulting vector map was estimated about 300-m.

Extraction of Attentive Objects Using Feature Maps (특징 지도를 이용한 중요 객체 추출)

  • Park Ki-Tae;Kim Jong-Hyeok;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.12-21
    • /
    • 2006
  • In this paper, we propose a technique for extracting attentive objects in images using feature maps, regardless of the complexity of images and the position of objects. The proposed method uses feature maps with edge and color information in order to extract attentive objects. We also propose a reference map which is created by integrating feature maps. In order to create a reference map, feature maps which represent visually attentive regions in images are constructed. Three feature maps including edge map, CbCr map and H map are utilized. These maps contain the information about boundary regions by the difference of intensity or colors. Then the combination map which represents the meaningful boundary is created by integrating the reference map and feature maps. Since the combination map simply represents the boundary of objects we extract the candidate object regions including meaningful boundaries from the combination map. In order to extract candidate object regions, we use the convex hull algorithm. By applying a segmentation algorithm to the area of candidate regions to separate object regions and background regions, real object regions are extracted from the candidate object regions. Experiment results show that the proposed method extracts the attentive regions and attentive objects efficiently, with 84.3% Precision rate and 81.3% recall rate.

Feature Point Extraction of Sea Cucumbers using Canny Edge Detection (캐니 에지 검출을 이용한 해삼의 특징점 추출)

  • Lee, Keon-Ik;Woo, Young-Bae;Min, Jun-Sik;Choi, Chul-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1281-1286
    • /
    • 2018
  • The sea cucumber, which is distributed over 1,500 species worldwide, is a highly value-added variety that has been considered an important source of marine resources in many countries for a long period of time. Most of the research on sea cucumbers involves the effectiveness of food and its extractions; however, there was no research on the extraction of sea cucumbers. In response, this research suggested a boundary detection algorithm to extract the special spot of sea cucumbers Therefore, in order to capture a large quantity of high value-added in sea cucumbers and we believe that they will be a great help to the sea cucumber recognition program in the future.

Medical Image Classification and Retrieval Using Ensemble Combination of Visual Descriptors (시각 기술자들의 앙상블 결합을 이용한 의료 영상 분류와 검색)

  • Ki-Hee Park;Jeong-Hee Shim;Byoung-Chul Ko;Jae-Yeal Nam
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.96-99
    • /
    • 2008
  • 본 논문은 의료 영상을 효과적으로 분류하고 검색 하기 위한 새로운 알고리즘을 제안한다. 의료 영상 중 X-Ray 영상은 어두운 배경에 반해 밝은 전경을 갖고 있기 때문에, 전경의 두드러진 부분에서만 시각 기술자로 추출한다. 우선, 색 구조 기술자(H-CSD)에서 해리스 코너 검출기로 검출한 관심 포인트들에서 색상 특징을 추출하고, 경계선 히스토그램 기술자에서 영상의 전역 및 지역적 질감 특징을 추출한다. 추출된 특징 벡터는 멀티클래스 SVM 에 적용되어 각 영상을 위한 멤버십 스코어를 얻는다. 이후, H-CSD와 EHD 에 대한 SVM 의 멤버십 스코어를 앙상블 결합하여 하나의 특징 벡터로 생성하고, K-nearest Neighborhood 방법을 이용하여 상위-K 개의 영상을 검색을 하도록 하였다. imageCLEFmed2007 을 이용한 실험 결과에서 다른 전역적 속성 또는 분류 기반 검색 방법에 비교하여 보다 개선된 검색 성능을 나타냄을 확인하였다.

Content-based Shot Boundary Detection from MPEG Data using Region Flow and Color Information (영역 흐름 및 칼라 정보를 이용한 MPEG 데이타의 내용 기반 셧 경계 검출)

  • Kang, Hang-Bong
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.402-411
    • /
    • 2000
  • It is an important step in video indexing and retrieval to detect shot boundaries on video data. Some approaches are proposed to detect shot changes by computing color histogram differences or the variances of DCT coefficients. However, these approaches do not consider the content or meaningful features in the image data which are useful in high level video processing. In particular, it is desirable to detect these features from compressed video data because this requires less processing overhead. In this paper, we propose a new method to detect shot boundaries from MPEG data using region flow and color information. First, we reconstruct DC images and compute region flow information and color histogram differences from HSV quantized images. Then, we compute the points at which region flow has discontinuities or color histogram differences are high. Finally, we decide those points as shot boundaries according to our proposed algorithm.

  • PDF

Object Extraction Technique using Extension Search Algorithm based on Bidirectional Stereo Matching (양방향 스테레오 정합 기반 확장탐색 알고리즘을 이용한 물체추출 기법)

  • Choi, Young-Seok;Kim, Seung-Geun;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, to extract object regions in stereo image, we propose an enhanced algorithm that extracts objects combining both of brightness information and disparity information. The approach that extracts objects using both has been studied by Ping and Chaohui. In their algorithm, the segmentation for an input image is carried out using the brightness, and integration of segmented regions in consideration of disparity information within the previously segmented regions. In the regions where the brightness values between object regions and background regions are similar, however, the segmented regions probably include both of object regions and background regions. It may cause incorrect object extraction in the merging process executed in the unit of the segmented region. To solve this problem, in proposed method, we adopt the merging process which is performed in pixel unit. In addition, we perform the bi-directional stereo matching process to enhance reliability of the disparity information and supplement the disparity information resulted from a single directional matching process. Further searching for disparity is decided by edge information of the input image. The proposed method gives good performance in the object extraction since we find the disparity information that is not extracted in the traditional methods. Finally, we evaluate our method by experiments for the pictures acquired from a real stereoscopic camera.

A Study on Genetic Algorithm and Stereo Matching for Object Depth Recognition (물체의 위치 인식을 위한 유전 알고리즘과 스테레오 정합에 관한 연구)

  • Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.355-361
    • /
    • 2008
  • Stereo matching is one of the most active research areas in computer vision. In this paper, we propose a stereo matching scheme using genetic algorithm for object depth recognition. The proposed approach considers the matching environment as an optimization problem and finds the optimal solution by using an evolutionary strategy. Accordingly, genetic operators are adapted for the circumstances of stereo matching. An individual is a disparity set. Horizontal pixel line of image is considered as a chromosome. A cost function is composed of certain constraints which are commonly used in stereo matching. Since the cost function consists of intensity, similarity and disparity smoothness, the matching process is considered at the same time in each generation. The LoG(Laplacian of Gaussian) edge is extracted and used in the determination of the chromosome. We validate our approach with experimental results on stereo images.