• Title/Summary/Keyword: 결함 관리 기법

Search Result 2,856, Processing Time 0.03 seconds

Vertical Distribution of Vascular Plant Species along an Elevational Gradients in the Gyebangsan Area of Odaesan National Park (오대산국립공원 계방산지구 관속식물의 고도별 수직분포)

  • An, Ji-Hong;Park, Hwan-Jun;Nam, Gi-Heum;Lee, Byoung-Yoon;Park, Chan-Ho;Kim, Jung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.381-402
    • /
    • 2017
  • In order to investigate distribution of vascular plants along elevational gradient in the Nodong valley of Gyebangsan, vascular plants of eight sections with 100-meter-high were surveyed from the Auto-camping site (800 m) to the top of a mountain (1,577 m). There were a total of 382 taxa: 89 families, 234 genera, 339 species, 7 subspecies, 34 varieties, and 2 forms. As a result of analyzing the pattern of species richness, it showed a reversed hump-shaped with minimum richness at mid-high elevation. As a result of analyzing habitat affinity types, the proportion of forest species increased with increasing elevation. But, the ruderal species decreased with increasing elevation, and then increased at the top of a mountain. As for the proportion of life forms, the annual herbs gradually decreased with increasing elevation, but it did not appear between 1,300 m and 1,500 m and then increased at the top of a mountain. The trees gradually increased with elevation and decreased from 1,300~1,400 m. The vascular plants divided into four groups by using DCA. The arrangement of each stands was arranged in order from right to left on the I axis according to the elevation. The distribution of vascular plants is determined by their own optimal ranges of vegetation. Also, rise in temperature due to climate change affects the distribution of vascular plants, composition, and diversity. Therefore, continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. Furthermore, plans for conservation and management based on these data should be prepared according to climate change.

Analysis of Environmental Factors and Change of Vascular Plant Species along an Elevational Gradients in Baekdansa, Mt. Taebaeksan National Park (태백산국립공원 백단사코스의 고도별 관속식물상 변화와 환경요인 분석)

  • An, Ji-Hong;Park, Hwan-Joon;Lee, Sae-rom;Seo, In-Soon;Nam, Gi-Heum;Kim, Jung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.378-401
    • /
    • 2019
  • This study generated a list of plants in eight sections from the Baekdansa ticket office (874m) to Cheonjedan (1,560m) divided in the interval of 100m above sea level to examine the species diversity patterns and distribution changes of the vascular plants at different altitudes in Taebaeksan National Park. Four site surveys found a total of 385 taxa: 89 families, 240 genera, 345 species, 5 subspecies, 34 varieties, and 1 form. A result of analyzing the change of species diversity along elevational gradients showed that it decreased with increasing elevation and then increased from a certain section. A result of analyzing habitat affinity types showed that the proportion of forest species increased with increasing elevation. On the other hand, the ruderal species appeared at a high rate in the artificial interference section. A result of comparing the proportion of woody and herb plants showed that the woody plants gradually increased with elevation and rapidly decreased in the artificial interference section. On the other hand, the herb plants showed the opposite trend. A result of analyzing the change of distribution of species according to altitude with the DCA technique showed that the vascular plants were divided into three groups according to the elevation in order on the I axis with the boundaries at 900m and 1,300m above sea level. The arrangement of each stand from right to left along the altitude on the I axis with a significant correlation with warmth index (WI) confirmed that the temperature change along the altitude could affect the distribution of vascular plants, composition, and diversity. Therefore, the continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. We expect that the results of this study will be used as the basic data for establishing the measurement measures related to the preservation of biodiversity and climate change.

A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis (비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구)

  • Jeong, Minsu;Park, Seo-Yeon;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • This study analyzed past drought characteristics based on the observed rainfall data and performed a long-term outlook for future extreme droughts using Representative Concentration Pathways 8.5 (RCP 8.5) climate change scenarios. Standardized Precipitation Index (SPI) used duration of 1, 3, 6, 9 and 12 months, a meteorological drought index, was applied for quantitative drought analysis. A single long-term time series was constructed by combining daily rainfall observation data and RCP scenario. The constructed data was used as SPI input factors for each different duration. For the analysis of meteorological drought observed relatively long-term since 1954 in Korea, 12 rainfall stations were selected and applied 10 general circulation models (GCM) at the same point. In order to analyze drought characteristics according to climate change, trend analysis and clustering were performed. For non-stationary frequency analysis using sampling technique, we adopted the technique DEMC that combines Bayesian-based differential evolution ("DE") and Markov chain Monte Carlo ("MCMC"). A non-stationary drought frequency analysis was used to derive Severity-Duration-Frequency (SDF) curves for the 12 locations. A quantitative outlook for future droughts was carried out by deriving SDF curves with long-term hydrologic data assuming non-stationarity, and by quantitatively identifying potential drought risks. As a result of performing cluster analysis to identify the spatial characteristics, it was analyzed that there is a high risk of drought in the future in Jeonju, Gwangju, Yeosun, Mokpo, and Chupyeongryeong except Jeju corresponding to Zone 1-2, 2, and 3-2. They could be efficiently utilized in future drought management policies.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.

Trend Analysis of Documenting the Gardens of Old Houses with the Measurement Drawings of National Folklore Cultural Heritage (국가민속문화재의 실측도면을 통해 살펴본 고택 정원의 기록화 경향 분석)

  • LIM, Cheyeon;LEE, Jaeyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.46-58
    • /
    • 2022
  • This study analyzed the documentation trend of garden components such as plants, infrastructure, unit facilities, and structures, based on 188 measurement drawings of 94 old houses in a report on the documentation of the national folklore cultural heritage. The findings are as follows. First, it was found that plants and structures continuously appeared as the subject of measurement drawings, while infrastructure was often omitted. It was confirmed that unit facilities, which are smaller than other components, were frequently excluded from the documentation subject as well due to frequent changes such as movement, loss, and expansion. Second, the level of expression in measurement drawings showed different aspects for each component. The unit facilities showed a large change over time with respect to the level of documentation, and the level of documentation was somewhat polarized, particularly toward the latter stage. This suggests that the level of documenting the drawings limited to specific facilities improved, but the overall level of drawings did not improve, such as a lack of diversification of expression techniques suitable for various unit facilities. On the other hand, it was confirmed that the level of documenting the drawings for plants, infrastructure and structures did not change to a significant degree, implying that no improvements were made to the expression of components. Third, as for the technique of detailed expression, in the case of plants, vegetation status was prepared without distinction of old or protected trees that have historical value. Above all, there was no record of the vegetation structure that could help grasp the vegetation landscape of the outer area. As for the infrastructure, there was no consistent expression technique to systematically convey topographic changes such as the height and slope of the land. In addition, since there was no subtype classification defined for unit facilities and structures, there was no subject or method of documentation. This study is meaningful in that it expanded the category of documentation, which has been concentrated on buildings in old houses, to gardens, and called attention to the need for documenting the gardens for the preservation and management of old houses as an integration of the building and outer area.

Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island (딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발)

  • Park, Jaesung;Jeong, Jiho;Jeong, Jina;Kim, Ki-Hong;Shin, Jaehyeon;Lee, Dongyeop;Jeong, Saebom
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.697-723
    • /
    • 2022
  • Data-driven models to predict groundwater levels 30 days in advance were developed for 12 groundwater monitoring stations in the middle-Jeju watershed, Jeju Island. Stacked long short-term memory (stacked-LSTM), a deep learning technique suitable for time series forecasting, was used for model development. Daily time series data from 2001 to 2022 for precipitation, groundwater usage amount, and groundwater level were considered. Various models were proposed that used different combinations of the input data types and varying lengths of previous time series data for each input variable. A general procedure for deep-learning-based model development is suggested based on consideration of the comparative validation results of the tested models. A model using precipitation, groundwater usage amount, and previous groundwater level data as input variables outperformed any model neglecting one or more of these data categories. Using extended sequences of these past data improved the predictions, possibly owing to the long delay time between precipitation and groundwater recharge, which results from the deep groundwater level in Jeju Island. However, limiting the range of considered groundwater usage data that significantly affected the groundwater level fluctuation (rather than using all the groundwater usage data) improved the performance of the predictive model. The developed models can predict the future groundwater level based on the current amount of precipitation and groundwater use. Therefore, the models provide information on the soundness of the aquifer system, which will help to prepare management plans to maintain appropriate groundwater quantities.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Introduction of Denitrification Method for Nitrogen and Oxygen Stable Isotopes (δ15N-NO3 and δ18O-NO3) in Nitrate and Case Study for Tracing Nitrogen Source (탈질미생물을 이용한 질산성 질소의 산소 및 질소 동위원소 분석법 소개)

  • Lim, Bo-La;Kim, Min-Seob;Yoon, Suk-Hee;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of denitrification bacteria method (Pseudomonas chlororaphis ssp. Aureofaciens ($ATCC^{(R)}$ 13985)), three reference (IAEA-NO-3 (Potassium nitrate $KNO_3$), USGS34 (Potassium nitrate $KNO_3$), USGS35 (Sodium nitrate $KNO_3$)) were analyzed 5 times repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values of IAEA-NO-3, USGS 34 and USGS35 were ${\delta}^{15}N:4.7{\pm}0.1$${\delta}^{18}O:25.6{\pm}0.5$‰, ${\delta}^{15}N:-1.8{\pm}0.1$${\delta}^{18}O:-27.8{\pm}0.4$‰, and ${\delta}^{15}N:2.7{\pm}0.2$${\delta}^{18}O:57.5{\pm}0.7$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated isotope values of potential nitrogen source (soil, synthetic fertilizer and organic-animal manures) and temporal patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values in river samples during from May to December. ${\delta}^{15}N-NO_3$ and ${\delta}^{18}O-NO_3$ values are enriched in December suggesting that organic-animal manures should be one of the main N sources in those areas. The current study clarifies the reliability of denitrification bacteria method and the usefulness of stable isotopic techniques to trace the anthropogenic nitrogen source in freshwater ecosystem.

A Study on the Representation Characteristics of Yuanming New Garden in China by Traditional Landscape Creation Techniques (전통조경 조성 기법으로 본 중국 원명신원의 재현 특성 고찰)

  • Kim, Dong-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.103-114
    • /
    • 2020
  • This study was conducted on Yuanming New Garden in China, which re-lighted the previously lost or damaged original space through representation from the perspective of creating traditional landscape. We looked at the composition of this place, the comparison of relevant literature and actual representation, and the characteristics of representation techniques. The results are as follows. First, TYuanming New Garden is a representation space with the motif of Yunamingyuan in Beijing. An advisory group of some 400 related experts discussed the prototype. The historicity of the real space was considered in the representation process. Second, New Yuanmingyuan garden was recreated based on the 'The Forty Scenic Views of Yuanmingyuan', and 31 of the scenic spots were created. The buildings in each precinct had a 1:1 scale response with structures that were previously constructed in Yuanmingyuan, Beijing. New Yuanmingyuan garden's way in which the main landscape is laid out around the Fuhai Lake(福海), which the landscape is drawn appeared was the same as Yuanmingyuan in Beijing. However, some of the facilities were reproduced on the basis of the 'The Forty Scenic Views of Yuanmingyuan', so they turned out to be different from what Yuanminyuan in Beijing looks like today. New Changchunyuan garden was represented around water landscape of the Western Mansins(Xiyang Lou, 西洋樓) area and the Haeakgaegum(海岳開襟), and the buildings and the facilities were reconstructed based on the 'Copper Print of Western Mansins'. Third, Yuanming New Garden made a prototype of the 'The Forty Scenic Views of Yuanmingyuan' and 'Copper Print of Western Mansins' during the process of synchronic changes in the garden. In addition, the original space and the ambiguous original space or exhibition space were clearly identified through the plant. On the other hand, due to the reenactment of buildings, the spatial composition and placeability of the original spaces of Yuanmingyuan garden and Changchunyuan garden in Beijing were not inherited, and the introduction of elements that did not match traditional landscaping spaces, and the introduction of garden elements that were not prototype and other variations for the use of tourism were found to be drawback.