DOI QR코드

DOI QR Code

Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea

창원지역 낙동강 하천수와 주변 충적층을 이용한 지하수 인공함양의 효율성 평가

  • Moon, Sang-Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ha, Kyoochul (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Yongcheol (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Koh, Dong-Chan (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yoon, Heesung (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 문상호 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 하규철 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 김용철 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 고동찬 (한국지질자원연구원 지구환경연구본부 지하수연구실) ;
  • 윤희성 (한국지질자원연구원 지구환경연구본부 지하수연구실)
  • Received : 2014.11.07
  • Accepted : 2014.12.22
  • Published : 2014.12.28

Abstract

The alluvial aquifer, widely developed near the four major rivers such as Nakdong River, can be used effectively for groundwater artificial recharge and is expected to be the future water resources in Korea. This study is aimed at examining the impact of repeatedly injected river water into the riverside alluvial aquifer on injection rate or efficiency in its system at Changweon area. For this, injection tests were performed two times, first on June 19 and second on September 25 through October 9, 2013, and the mixing ratios of river water to groundwater were used as the tool to compare the efficiency of injection. The mixing ratios were evaluated by using electrical conductivities of injected river water (average $EC=303{\mu}S/cm$) and groundwater ($EC{\fallingdotseq}6,000{\mu}S/cm$) measured at 20 m depth of four observation wells installed 10 m apart from each injection well. The result shows the remarkable differences on two respects. First, in some observation well, detection time for incipient injection effect during $2^{nd}$ injection test was shown to be much slower than that of $1^{st}$ injection test. Second, the hourly increasing rate of mixing ratios in $2^{nd}$ test was revealed to be reduced much more than that of $1^{st}$ test. This means that the efficiency of injection was badly deteriorated by only 1,210 minute injection work. Therefore, injection water needs to be adequately treated beforehand and repeated pumping work and/or resting phase is needed afterwards. To a certain extent, the improvement of water quality in saline aquifer was verified in this system by injection tests.

우리나라에는 4대강 주변에 충적 대수층이 많이 발달하고 있으며, 이러한 충적층을 활용한 인공함양 시스템 운영은 향후 우리나라 미래 수자원 확보에 있어서 중요한 수단이 될 수 있을 것으로 기대된다. 이 연구는 낙동강 하천변 충적층에서 대수층 저류/이동/회수 방식의 인공함양 기법을 적용하였을 때, 하천수의 반복적인 주입이 대수층의 주입능력에 어떻게 영향을 미치는가에 대하여 고찰하였다. 인공함양 시스템의 주입 효율을 평가하기 위해서 2차례에 걸친 주입시험을 실시하였으며, 각 시험에서의 주입수(하천수)와 4개 관측정 내 지하수의 혼합 비율을 계산하여 주입 효율의 변화를 검토하였다. 혼합 비율 계산에서 사용된 수질 성분은 전기전도도로서, 연구지역에서의 하천수와 대상 지하수의 EC 값은 현저한 차이를 보여 혼합 결과를 확실하게 반영해 주었다. 2차례의 주입시험 결과, 일부 관측정에서는 1차에 비해 2차 시험에서 주입 효과의 발생 시점이 매우 느리게 나타났으며, 대부분의 관측정에서 주입수의 혼합 비율 상승률이 1차 시험에 비해 2차 시험에서 현저히 저하되어 나타났다. 이러한 결과는 인공함양 시스템의 운영이 시간이 흐를수록 그 효율성이 떨어지게 됨을 지시해주는 것이며, 향후 주입수의 수처리 등 사전 관리와 함께 주기적 양수시험, 휴지기 운영 등 사후 관리가 필수적으로 수반되어야 함을 말해 준다. 하천수 주입에 의한 대수층의 수질 개선 효과는 1차 1,210분 주입 시 1일 이상, 2차 14일간 주입 시 4일 혹은 6일 이상 유지됨을 보였다.

Keywords

References

  1. Bouwer, H. (2000) Groundwater problems caused by irrigation with sewage effluent. Jour. Environ. Health, v.63, n.5, p.17-20.
  2. Bouwer, H. (2002) Artificial recharge of groundwater: hydrogeology and engineering, Hydrogeol. Jour., v.10, n.1, p.121-142. https://doi.org/10.1007/s10040-001-0182-4
  3. Cheong, J.Y., Hamm S.Y., Kim, H.S., Son K.T., Cha, Y.H., Jang, S. and Baek K.H. (2003) Characteristics of waterlevel fluctuation in riverside alluvium of Daesan-myeon, Changwon city. Jour. Eng. Geol., v.13, n.4, p.457-474.
  4. Dillon, P. (2005) Future management of aquifer recharge. Hydrogeol. Jour., v.13, n.1, p.313-316. https://doi.org/10.1007/s10040-004-0413-6
  5. KiGAM (2010) Integrated technologies in securing and applying groundwater resources to cope with earth environmental changes. GP2009-009-01-2010(2), 347p.
  6. KIGAM (2012) Development of integrated core technologies in aquifer recharge system for groundwater sustainability. GP2012-013-2012(1), 267p.
  7. KIGAM (2013) Development of integrated core technologies in aquifer recharge system for groundwater sustainability. GP2012-013-2013(2), 261p.
  8. Kim H.S. (2003) Case study and development plan for groundwater artificial recharge in Korea. International Symposium for "Development of sustainable groundwater and recharge technology", p.1-30.
  9. Kim, Y., Kim, Y., Moon D.C., Kang, B.-R., Koh G.W. and Park, K.-H. (2008) Jeju-friendly aquifer artificial recharge technology. 7th Academic Seminar on Jeju Groundwater.
  10. Kim, Y. and Kim, Y. (2010) A review on the state of the art in the management of aquifer recharge, Jour. Geol. Soc. Korea, v.46, n.5, p.521-533.
  11. Kim, N.J. and Lee, H.G. (1964) Explanatory text of the geological map of Yeongsan sheet (1:50,000). Geol. Sur. Korea, 31p.
  12. Kinzelbach, W., Bauer, P., Siegfried, T. and Brunner, P. (2003) Sustainable groundwater management problems and scientific tools. Episodes, v.26, n.4, p.279-284.
  13. Lerner, D.N. (2002) Identifying and quantifying urban recharge: a review. Hydrogeol. Jour., v.10, n.1, p.143-152. https://doi.org/10.1007/s10040-001-0177-1
  14. Moon, S.H., Ha, K., Kim, Y. and Yoon, P. (2012) Analysis of groundwater use and discharge in water curtain cultivation areas: Case study of the Cheongweon and Chungju areas. Jour. Eng. Geol., v.22, n.4, p.387-398. https://doi.org/10.9720/kseg.2012.4.387
  15. Oh, S.H., Kim, Y.C. and Koo, M.H. (2011) Modeling artificial groundwater recharge in the Hancheon drainage area, Jeju island, Korea. Jour. Soil & Groundwater Environ., v.16, n.6, p.34-45. https://doi.org/10.7857/JSGE.2011.16.6.034
  16. Querner, E.P. (2000) The effects of human intervention in the water regime. Ground Water, v.38, p.167-171. https://doi.org/10.1111/j.1745-6584.2000.tb00327.x
  17. Seo, J.A., Kim, Y.J., Kim, J.S. and Kim, Y. (2010) Development of evaluation method for potential artificial recharge site using GIS. Annual Meeting of the Geological Society of Korea, Gyeongju, p.313.
  18. Seo, J.A., Kim, Y., Kim, J.S. and Kim, Y.J. (2011) Site prioritization for artificial recharge in Korea using GIS mapping. Jour. Soil & Groundwater Environ., v.16, n.6, p.66-78. https://doi.org/10.7857/JSGE.2011.16.6.066
  19. Tuinhof, A. and Heederik, J.P. (eds) (2003) Management of aquifer recharge and subsurface storage. Netherlands National Committee-International Association of Hydrogeology, No. 4, NNC-IAH Publication.
  20. Tyler, S.W., Chapman, J.B., Conrad, S.H., Hammermeister, D.P., Blout, D.O., Miller, J.J., Sully, M.J. and Ginanni, J.M. (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years. Water Resour. Res., v.32, n.6, p.1481-1499. https://doi.org/10.1029/96WR00564
  21. Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S. and Bierkens, M.F.P. (2010) Global depletion of groundwater resources, Geophysic. Res. Lett., v.37, L20402, doi:10.1029/2010GL044571.

Cited by

  1. Replacement of Saline Water through Injecting Fresh Water into a Confined Saline Aquifer at the Nakdong River Delta Area vol.25, pp.2, 2015, https://doi.org/10.9720/kseg.2015.2.215
  2. Heterogeneity characterization in a coastal confined aquifer of the Nakdong River delta area using geological and groundwater modeling vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.511
  3. Microbial Reduction of Fe(III) and SO4 2− and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments 2018, https://doi.org/10.1007/s00248-017-1119-3
  4. Vertical and Horizontal Distribution of Bacterial Communities in Alluvial Groundwater of the Nakdong River Bank vol.35, pp.1, 2018, https://doi.org/10.1080/01490451.2017.1321066
  5. Preliminary study on the comparison of water supply costs between groundwater and surface water vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.457
  6. Impacts of Seasonal Pumping on Stream-Aquifer Interactions in Miryang, Korea vol.55, pp.6, 2017, https://doi.org/10.1111/gwat.12543