• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.035 seconds

Open set Object Detection combining Multi-branch Tree and ASSL (다중 분기 트리와 ASSL을 결합한 오픈 셋 물체 검출)

  • Shin, Dong-Kyun;Ahmed, Minhaz Uddin;Kim, JinWoo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.171-177
    • /
    • 2018
  • Recently there are many image datasets which has variety of data class and point to extract general features. But in order to this variety data class and point, deep learning model trained this dataset has not good performance in heterogeneous data feature local area. In this paper, we propose the structure which use sub-category and openset object detection methods to train more robust model, named multi-branch tree using ASSL. By using this structure, we can have more robust object detection deep learning model in heterogeneous data feature environment.

Face Detection Using Multiple Filters and Hybrid Neural Networks (다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법)

  • Cho, Il-Gook;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

Multi-Color Threshold Model For Traffic Sign Detection (교통표지판 검출을 위한 다중 색상 임계값 모델)

  • Woo, Byeong-Dae;Choi, Yeong-Woo;Byun, Hye-Ran
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.226-228
    • /
    • 2013
  • 본 논문은 실제 주행 도로영상에서 교통표지판을 검출하기 위하여 다중 색상 임계값 모델을 이용한 색상 분할 방법을 제안한다. 제안하는 방법은 하나의 모델을 이용하는 기존의 색 분할 방법과 달리 다양한 조명 환경에서도 동작할 수 있는 다중 색상 모델을 사용한 방법이다. 모델 생성을 위해 각 조명 모델에 해당하는 학습용 데이터를 이용하여 모델의 임계값 범위를 추정한다. 이 과정에서 임계값의 범위는 상위 0.5%와 하위 0.5%를 제외한 픽셀 값 분포에서의 최대 및 최소값으로 결정한다. 제안한 방법을 이용하여 다양한 조명 상태에서의 교통표지판도 검출이 가능하다.

Discriminative Weight Training for a Statistical Model-Based Voice Activity Detection (통계적 모델 기반의 음성 검출기를 위한 변별적 가중치 학습)

  • Kang, Sang-Ick;Jo, Q-Haing;Park, Seung-Seop;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.194-198
    • /
    • 2007
  • In this paper, we apply a discriminative weight training to a statistical model-based voice activity detection(VAD). In our approach, the VAD decision rule is expressed as the geometric mean of optimally weighted likelihood ratios(LRs) based on a minimum classification error(MCE) method which is different from the previous works in that different weights are assigned to each frequency bin which is considered more realistic. According to the experimental results, the proposed approach is found to be effective for the statistical model-based VAD using the LR test.

Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN (Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법)

  • Min, Dongwook;Lim, Hyunseok;Gwak, Jeonghwan
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.134-143
    • /
    • 2020
  • Vehicle License Plate Recognition is one of the approaches for transportation and traffic safety networks, such as traffic control, speed limit enforcement and runaway vehicle tracking. Although it has been studied for decades, it is attracting more and more attention due to the recent development of deep learning and improved performance. Also, it is largely divided into license plate detection and recognition. In this study, experiments were conducted to improve license plate detection performance by utilizing various object detection methods and WPOD-Net(Warped Planar Object Detection Network) model. The accuracy was improved by selecting the method of detecting the vehicle(s) and then detecting the license plate(s) instead of the conventional method of detecting the license plate using the object detection model. In particular, the final performance was improved through the process of removing noise existing in the image by using the Fast-SRGAN model, one of the Super-Resolution methods. As a result, this experiment showed the performance has improved an average of 4.34% from 92.38% to 96.72% compared to previous studies.

Vehicle Segmentation Scheme Based on the Hidden Markov Model in Traffic Sequence (교통 영상에서 은닉 마르코프 모델을 이용한 차량 분할 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.850-852
    • /
    • 2005
  • 본 논문에서는 교통 영상에서 실시간으로 차량을 검출하는 새로운 기법을 소개한다. 차량의 검출을 위하여 구배도의 방향 정보를 사용하며 차량 영역의 정확한 분할을 위하여 은닉 마르코프 모델을 사용한다. 구배도 방향정보를 이용하므로 그림자 영역의 영향을 줄일 수 있으며 은닉 마르코프 모델을 이용하므로 배경과 비슷한 차량과 근접한 차량의 분리가 가능하다. 따라서 저해상도의 교 통 영상에서 다양한 기상 조건, 그림자의 존재와 교통 상황에 강건한 검출 결과를 나타낸다.

  • PDF

Face Detection Using Active Contours (Active Contours를 사용한 얼굴 검출)

  • 정도준;장재식;박세현;김항준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.195-199
    • /
    • 2002
  • 본 논문에서는 주어진 입력 이미지에서 얼굴 영역을 검출하기 위한 액티브 컨투어 모델(active contour models)을 제안한다. 제안한 모델은 스킨 칼라 모델(skin color model)에 의해 표현되는 사람 얼굴의 칼라 정보를 이용한다. 본 논문에서는 첨점(cusps), 모서리 (corners), 그리고 자동 위상 변화(automatic topological changes)를 고려한 레벨 셋 메소드(level set method)를 사용하여 액티브 컨투어를 진화시킨다. 실험 결과는 제안한 방법이 얼굴 영역 검출에 효과가 있음을 보여준다.

  • PDF

A Study of Pattern Defect Data Augmentation with Image Generation Model (이미지 생성 모델을 이용한 패턴 결함 데이터 증강에 대한 연구)

  • Byungjoon Kim;Yongduek Seo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.79-84
    • /
    • 2023
  • Image generation models have been applied in various fields to overcome data sparsity, time and cost issues. However, it has limitations in generating images from regular pattern images and detecting defects in such data. In this paper, we verified the feasibility of the image generation model to generate pattern images and applied it to data augmentation for defect detection of OLED panels. The data required to train an OLED defect detection model is difficult to obtain due to the high cost of OLED panels. Therefore, even if the data set is obtained, it is necessary to define and classify various defect types. This paper introduces an OLED panel defect data acquisition system that acquires a hypothetical data set and augments the data with an image generation model. In addition, the difficulty of generating pattern images in the diffusion model is identified and a possibility is proposed, and the limitations of data augmentation and defect detection data augmentation using the image generation model are improved.

A Study on the S/W Quality Improvement, Considering Fault Detection Rate (결함 검출비를 고려한 소프트웨어의 품질 향상에 관한 연구)

  • Che, Gyu-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.376-378
    • /
    • 2005
  • 일반적으로, 소프트웨어결함검출/제거메카니즘은 이전의 검출/제거결함과 테스트노력을 어떻게 활용하느냐에 달려있다. 실제 현장 연구로부터 우리는 테스트노력소모패턴을 추론하여 FDR의 경향을 예측할 수 있을 것으로 생각된다. 결함검출이 증가, 감소 및 일정한 것 등 광범위에 걸쳐서 나타나는 경향을 잡아내는 고유의 융통성을 가지는 하나의 시변수집합인 FDR모델에 근거한 테스트노력을 개발하였다. 본 논문에서는 FDR을 기술하고, 관련된 테스트 행위를 이러한 새로운 모델링접근법에 연합시킬 수 있다. 우리의 모델과 그리고 이것과 관련된 파라미터 분해기법을 적용한 것을 여러 가지 소프트웨어 프로젝트에서 도출한 실제 데이터집합을 통하여 시연한다. 모델들이 가중 산술, 가중 기하, 또는 가중 조화평균의 개념을 적용하여 어떻게 유도되는가를 기술한다. 그 외에도, 이러한 3개의 가중치 평균에 근거하여 유사산술의 관점으로부터 좀더 일반적인 NHPP 모델을 제안한다. 상기 3개 평균 외에 변환의 파라미터 계열을 포함한 좀더 일반적인 변환을 공식화한다.

  • PDF

A Study on Real-Time Detection System of Facial Region using Color Channel (컬러채널 실시간 복합 얼굴영역 검출 시스템 연구)

  • 송선희;석경휴;정유선;박동석;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.463-467
    • /
    • 2004
  • 본 논문에서는 컬러정보를 이용하여 외부 조명의 영향에 대응하면서 얼굴 후보영역을 추출하고, 추출된 후보 영역으로부터 다채널 스킨컬러 모델로 특정 정보를 추출하는 검출 기법을 제시한다. 외부 조명에 민감한 스킨컬러 특성을 고려해 색상정보와 광도를 분리할 수 있는 Y $C_{r}$ , $C_{b}$ 색상모델을 이용하며, Green, Blue 채널의 정보를 Gaussian 확률밀도 모델로부터 $C_{b-}$ $C_{g}$ 의 좁은 범위에 분포되어 있는 스킨컬러 영역 밀도를 모델링한다. 또한 얼굴영역에 Region Restricting과 임계값 반복 알고리즘을 사용하여 눈 영역 검출 과정을 보이고, 실시간 복합 얼굴 검출 시스템 조명방식에 의해 결과를 나타낸다.다.

  • PDF