Acknowledgement
이 논문은 중소기업벤처부의 재원으로 중소기업기술정보진흥원의 지원을 받아 수행한 연구임 (S3141550).
References
- withsystem, OLED Panel Pattern inspection, http://www.withsystem.co.kr/sub/product03.html [Accessed: Sep, 26, 2022] http://www.visionsystech.com [Acessed: Oct. 06. 2022].
- K. He, G. Gkioxari, P. Dollar, R. Girshick, "Mask R-CNN", 2017 CVPR, Mar. 2017, https://doi.org/10.48550/arXiv.1703.06870
- Byungjoon Kim, Yongduek Seo, "Data Generation System for Flaw Detection of OLED Panel and Application of RCNN-based Defect Detection.", The Journal of Korean Institute of Information Technology, 20(12),57-63.
- R. Girshick, J. Donahue, T. Darrell, J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014, Nov. 2013, https://doi.org/10.48550/arXiv.1311.2524
- R. Girshick, "Fast R-CNN", 2015 IEEE (ICCV), 2015, pp. 1440-1448. 2015
- J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, RealTime Object Detection", 2016 CVPR, May. 2016, https://doi.org/10.48550/arXiv.1506.02640.
- T. Karras, S. Laine, T. Aila, "A Style-Based Generator Architecture for Generative Adversarial Networks", CVPR 2019, Dec. 2018, https://doi.org/10.48550/arXiv.1812.04948
- Kingma, D. P., & Welling, M. (2013). "Auto-Encoding Variational Bayes.", Machine Lerning, Dec. 2013 https://doi.org/10.48550/arXiv.1312.6114
- an den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., & Kavukcuoglu, K. "Conditional Image Generation with PixelCNN Decoders.", 2016, In Advances in Neural Information Processing Systems (pp. 4790-4798)
- B. Trabucco, K. Doherty, M. Gurinas, R. Salakhutdinov, "Effective Data Augmentation with Diffusion Models", CVPR, Feb. 2023, https://doi.org/10.48550/arXiv.2302.07944
- J. Ho, A. Jain, P. Abbeel, "Denoising Diffusion Probabilistic Models", Machine Learning. Jun. 2020, https://doi.org/10.485550/arXiv.2006.11239
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, "High-Resolution Image Synthesis with Latent Diffusion Models", CVPR 2022, Dec. 2021, https://doi.org/10.48550/arXiv.2112.10752